Preview

Nuclear Physics and Engineering

Advanced search

Recognition of Leukocytes on Peripheral Blood and Bone Marrow Smears Using a Neural Network Approach

https://doi.org/10.56304/S2079562922030605

Abstract

The article studies the problem of classification of leukocytes on images of peripheral blood and bone marrow preparations with multiple contact of leukocytes with each other for automated diagnosis of diseases of the hematopoiesis system. The proposed approach is based on the definition of a class of leukocytes by a combination of the K-means method and a convolutional neural network. The application of the Kmeans method is preceded by the implementation of the watershed algorithm with distance conversion. According to the results of the experiment, the accuracy of recognition of lymphoblasts, granulocytes, monocytes, lymphocytes was evaluated. The proposed solutions can later be applied in decision support systems for the diagnosis of acute leukemia.

About the Authors

Yu. V. Zorin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



M. A. Avanesov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. N. Pronichev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. D. Palladina
Blokhin National Medical Research Center of Oncology
Russian Federation

Moscow, 115478



References

1. Тупицын Н.Н. Иммунология клеток крови. В кн.: Гематология. Национальное руководство. Под ред. О.А. Рукавицына. 2015. Москва: ГЭОТАРМедиа.

2. Nikitaev V.G. et al. // Bull. Lebedev Phys. Inst. 2016. V. 43 (10). P. 306−308. https://doi.org/10.3103/S1068335616100055

3. Nikitaev V.G. et al. // J. Phys.: Conf. Ser. 2018. V. 945 (1). P. 012008. https://doi.org/10.1088/1742-6596/945/1/012008

4. Nikitaev V.G. et al. // J. Phys.: Conf. Ser. 2018. V. 945 (1). P. 012007. https://doi.org/10.1088/17426596/945/1/012007

5. Anilkumar K.K., Manoj V.J., Sagi T.M. // Biocybern. Biomed. Eng. 2020. V. 40 (4). P. 1406−1420.. https://doi.org/10.1016/j.bbe.2020.08.010

6. Liu H., Cao H., Song E. // J. Med. Syst. 2019. V. 43 (82). P. 1185. https://doi.org/10.1007/s10916-019-1185-9

7. Hegde R.B. et al. // J. Med. Syst. 2018. V. 42 (6). P. 110. https://doi.org/10.1007/s10916-018-0962-1

8. Arslan S., Ozyurek E., Gunduz‐Demir C. // Cytometry Part A. 2014. V. 85 (6) P.480−490. https://doi.org/10.1002/cyto.a.22457

9. Wang Y, Cao Y. // J. Algorithms Comput. Technol. 2019. V. 13. P. 1−10.

10. Cao H., Liu H., Song E. // Biomed. Signal Process. Control. 2018. V. 45. P. 10−21.

11. Baby D. // Int. J. Eng. Technol. 2018. V. 7 (2). P. 155−158. https://doi.org/10.14419/ijet.v7i2.24.12021

12. Miao H., Xiao C. // Comput. Math. Methods Med. 2018. V. 2018. P. 7235795. https://doi.org/10.1155/2018/7235795

13. Liu Y. et al. // IEEE J. Biomed. Health Inform. 2016. V. 21 (6). P. 1644−1655.

14. Loey M., Naman M., Zayed H. // Computers. 2020. V. 9 (2). P. 29. https://doi.org/10.3390/computers9020029

15. Yao X. et al. // Nanomed. Biotechnol. 2021. V. 49 (1). P. 147−155. https://doi.org/10.1080/21691401.2021.1879823

16. Andrade A. R. et al. // Comput. Methods Programs Biomed. 2019. V. 173. P. 1−14. https://doi.org/10.1016/j.cmpb.2019.03.001


Review

For citations:


Zorin Yu.V., Avanesov M.A., Pronichev A.N., Palladina A.D. Recognition of Leukocytes on Peripheral Blood and Bone Marrow Smears Using a Neural Network Approach. Nuclear Physics and Engineering. 2023;14(2):181-184. (In Russ.) https://doi.org/10.56304/S2079562922030605

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)