Preview

Nuclear Physics and Engineering

Advanced search

Formation of Layers from Self-Bonded SiC Using Laser Radiation

https://doi.org/10.56304/S2079562922050281

Abstract

The possibility of obtaining products from self-bonded silicon carbide using laser radiation in the absence of any additional impregnation with carbon-containing materials after siliconizing has been studied. It has been established that due to the control of thermal heating at each point of influence, it is possible to sequentially carry out all the necessary stages of the standard reaction sintering procedure in one cycle and change the traditional approach to the formation of such products using high-temperature heating furnaces. The quality of sintering was determined after etching of unreacted silicon by several laboratory methods. The main attention was paid to the study of bridges between particles from secondary SiC, both inside the layers and at their boundaries, since it is they that determine the strength characteristics of the created material and allow connecting the sintering regions to each other. After working out all the necessary stages of sintering for single-layer samples, an attempt was made to sequentially build up several layers, as well as to simulate the welding process of two pre-sintered samples.

About the Authors

S. A. Lysenko
Lebedev Physical Institute of Russian Academy of Sciences
Russian Federation

Moscow, 119991



N. N. Yuryshev
Lebedev Physical Institute of Russian Academy of Sciences
Russian Federation

Moscow, 119991



N. P. Vagin
Lebedev Physical Institute of Russian Academy of Sciences
Russian Federation

Moscow, 119991



References

1. Schlichting J., Riley F.L. Concise Encyclopedia of Advanced Ceramic Materials. 1991. Oxford: Pergamon.

2. Шелованова Г.Н. Современные проблемы микро- и наноэлектроники: учебное пособие. 2017. Красноярск: Сибирский федеральный университет.

3. Григорьев О.Н. // Порошковая металлургия. 2012. № 11. С. 100−116.

4. Гаршин А.П. и др. Керамика для машиностроения. 2003. Москва: Научтехлитиздат.

5. Frolova M.G. et al. // Inorg. Mater.: Appl. Res. 2018. V. 9. P. 675−678. https://doi.org/10.1134/S2075113318040123

6. Perevislov S.N., Bespalov I.A. // Tech. Phys. Lett. 2017. V. 43. P. 720−722.

7. Shikunov S.L., Kurlov V.N. // Tech. Phys. 2017. V. 62. P. 1869−1876.

8. Zhitnyuk S.V. et al. // Glass Ceram. 2013. V. 70 (7−8). P. 247−254. https://doi.org/10.1007/s10717-013-9554-1

9. Avrov D.D., Lebedev A.O., Tairov Yu.M. // Semiconductors. 2016. V. 50 (4). P. 494−501.

10. Shinozaki S.S., Carduner K.R. // Proc. Conf. Advanced Materials'93. 1994. P. 857−861.

11. Lebedev A.A. et al. // Materials. 2021. V. 14 (17). P. 4976. https://doi.org/10.3390/ma14174976

12. Сорокин О.Ю. // Авиационные материалы и технологии. 2015. № 1 (34). С. 65−70. https://doi.org/10.18577/2071-9140-2015-0-1-65-70

13. Boecker W.D. // Ceramic Forum Intern. 1997. V. 74 (5). P. 244−251.

14. Ивенин С.В. // Инженерные технологии и системы. 2015. Т. 25 (4). С. 37−50. https://doi.org/10.15507/0236-2910.025.201504.037

15. Гнесин Г.Г. Карбидокремниевые материалы. 1977. Москва: Металлургия. .

16. Snead L.L., Katoh Y., Nozawa T. // Compreh. Nucl. Mater. V. 4. 2012. P. 215−240. https://doi.org/10.1016/B978-0-08-056033-5.00093-8

17. Samoilov V.M., Porodzinskiy I.A. // Inorg. Mater. Appl. Res. 2014. V. 5 (5). P. 540−544. https://doi.org/10.1134/S2075113314050189

18. Maystrenko A.L., Kulich V.G., Tkach V.N. // J. Superhard Mater. 2009. V. 31 (1). P. 12−23. https://doi.org/10.3103/S1063457609010031

19. Verma A.R., Verma Q.R. Polymorphism and Polytypism in Crystals. 1996. New York: Wiley.


Review

For citations:


Lysenko S.A., Yuryshev N.N., Vagin N.P. Formation of Layers from Self-Bonded SiC Using Laser Radiation. Nuclear Physics and Engineering. 2023;14(2):173-180. (In Russ.) https://doi.org/10.56304/S2079562922050281

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)