Preview

Nuclear Physics and Engineering

Advanced search

Mechanisms of the Cladding Tubes Axial Cracking in Power Ramp Tests

https://doi.org/10.56304/S2079562922030320

Abstract

In the early 1990th the research program to investigate experimental fuel rods with different fuel compositions and claddings in the research reactor MIR was carried out by JSC “SSC Research Institute of Atomic Reactors” and JSC “VNIINM”. Reexamination of the program reports containing results of postirradiation tests allows ascertaining that some rods with the zirconium alloy E110 cladding tubes were subjected to the power ramp conditions. As a result some rods failed, but one of them demonstrated axial cracking from one end to the other. Unpublished results of the damaged fuel rods inspection are presented here. Different mechanisms of the cladding tubes axial cracking have been analyzed. It is shown that the key factors for axial cracking of claddings after power ramps are hydrogen embrittlement and radiation hardening of a material. However, to the moment it is not enough information to exactly select which mechanism of cladding failure was realized.

About the Authors

V. V. Novikov
SC Bochvar High-Tech Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123060



A. A. Plyasov
SC Bochvar High-Tech Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123060



References

1. Sakurai H., Wakashima Y. et al. // Proc. Int. Topical Meeting on LWR Fuel Performance. P. 515.

2. Shimada S. et al. // J. Nucl. Mater. 2004. V. 327. P. 97.

3. Hayashi H., Ogata K., Baba T., Kamimura K. // J. Nucl. Sci. Technol. 2006. V. 43. P. 1128.

4. Novikov V.V., Bibilashvilli Yu.K., Mikheev E.N. et al. // At. Energy. 2008. V. 105 (4). P. 262.

5. Sakamoto K., Nakatsuka M., Higuchi T. // J. ASTM Int. 2010. V. 7 (6). P. JAI102938. https://doi.org/10.1520/JAI102938

6. Cox B. Report AECL-3551. 1970. Chalk River: Atomic Energy of Canada Limited.

7. Park S.U. et al. // J. Nucl. Mater. 2008. V. 372. P. 293.

8. Novikov V.V. // At. Energy. 1991. V. 71. P. 557.

9. Motta A.T. et al. // J. Nucl. Mater. 2019. V. 518. P. 440.

10. Puls M.P. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Delayed Hydride Cracking. 2012. London: Springer-Verlag.

11. Sakamoto K., Nakatsuka M., Higuchi T. // Proc. Water Reactor Fuel Performance Meeting (WRFPM2008). 2008. Seul, South Korea.

12. Raynaud P.A., Koss D.A., Motta A.T. // J. Nucl. Mater. 2012. V. 420. P. 69.

13. Chu H.C., et al. // J. Nucl. Mater. 2007. V. 362. P. 93.

14. Alvarez-Holston A-M., Lysell J., Grigoriev V. // Proc. LWR Fuel Performance Meeting. 2007. San Francisco, CA, USA. P. 1080.

15. Min S.-J., Kim M.-S., Kim K.-T. // J. Nucl. Mater. 2013. V. 441. P. 306.

16. Yagnik S.K., Chen J-H., Kuo R-C. // Proc. 17th Int. Symposium on Zirconium in the Nuclear Industry.

17. Markelov V.A., Gusev A.Yu., Saburov N.S. et al. // Deform. Razrush. Mater. 2012. V. 11. P. 42 (in Russian).

18. Kubo T., Kobatashi Y., Uchikoshi H. // J. Nucl. Mater. 2012. V. 427. P. 18.

19. Huang F.H., Mills W.J. // Metall. Trans. A. 1991. V. 22. P. 2049.

20. Timoshenko S.P., Goodier J.N. Theory of Elasticity. 2010. India: McGraw-Hill Education.


Review

For citations:


Novikov V.V., Plyasov A.A. Mechanisms of the Cladding Tubes Axial Cracking in Power Ramp Tests. Nuclear Physics and Engineering. 2023;14(2):119-130. (In Russ.) https://doi.org/10.56304/S2079562922030320

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)