Preview

Nuclear Physics and Engineering

Advanced search

Influence of Density Perturbations on the Stability of the Inner Ice Boundary in Ice Targets

https://doi.org/10.56304/S2079562922030162

Abstract

The inertial confinement fusion has not been achieved yet. The reasons for this phenomenon are not fully understood. In our opinion, the main factor influencing the decrease in the yield is the evolution of hydrodynamic instabilities due to geometric inhomogeneities (surface roughness, the presence of asymmetric elements etc.). The perturbed density field can result from these inhomogeneities. The results of a theoretical study of the influence of density perturbations on the stability of the boundary under accelerated motion are presented in this paper. The performed numerical simulations are compared with theoretical results.

About the Authors

K. E. Gorodnichev
Dukhov Research Institute of Automatics (VNIIA)
Russian Federation

Moscow, 127055



S. I. Glazyrin
Dukhov Research Institute of Automatics (VNIIA)
Russian Federation

Moscow, 127055



D. K. Ilnitsky
Dukhov Research Institute of Automatics (VNIIA)
Russian Federation

Moscow, 127055



S. E. Kuratov
Dukhov Research Institute of Automatics (VNIIA)
Russian Federation

Moscow, 127055



References

1. Kline J. et al. // Nucl. Fusion. 2019. V. 59. P. 112018.

2. Abu-Shawared H. et al. // Phys. Rev. Lett. 2022. V. 129. P. 075001.

3. Meezan N.B. et al. // Plasma Phys. Control. Fusion. 2017. V. 59. P. 014021.

4. Koch J.A. et al. // Fusion Sci. Technol. 2001. V. 4. P. 55–66.

5. Bel’kov et al. // J. Exp. Theor. Phys. 2017. V. 124. P. 341–351.

6. Bel’kov et al. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 025011.

7. Clark D.S. et al. // Phys. Plasmas. 2010. V. 17. P. 052703.

8. Clark D.S. et al. // Phys. Plasmas. 2013. V. 20. P. 056318.

9. Smalyuk V.A. et al. // Phys. Plasmas. 2015. V. 22. P. 072704.

10. Peterson J.R., Johnson B.M., Haan S.W. // Phys. Plasmas. 2018. V. 25. P. 092705.

11. Mikaelian K.O. // Phys. Rev. Fluids. 2016. V. 1. P. 033601.

12. Bulat P.V., Volkov K.N. // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16 (3). P. 550–558.

13. Luo X et al. // Phys. Rev. E. 2016. V. 93. P. 013101.

14. Zeng S., Takayama K. // Acta Astronaut. 1996. V. 38 (11). P. 829–838.

15. Zhou Y. // Phys. Rep. 2017. V. 723–725. P. 1–160.

16. Abarzhi S.I. // Phil. Trans. R. Soc. A. 2010. V. 368 (1916). P. 1809–1828.

17. Brouillette M. // Ann. Rev. Fluid Mech. 2002. V. 34 (1). P. 445–468.

18. Taylor G.I. // Proc. R. Soc. A. 1950. V. 201 (1065). P. 192–196.

19. Rayleigh L. // Proc. London Math. Soc. 1883. V. 14. P. 170–177.

20. Landau L.D., Lifshitz E.M. Fluid Mechanics. 1987. New York: Pergamon.

21. Haan S.W. et al. // Phys. Plasmas. 2011. V. 18. P. 1001.

22. Bel’kov S.A. et al. // J. Exp. Theor. Phys. 2015. V. 121 (4). P. 686–698.

23. Gorodnichev K.E. et al. // Phys. Fluids. 2020. V. 32. P. 034101.

24. Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. 2001. London: Chapman and Hall.

25. Doetsch G. Introduction to the Theory and Application of the Laplace Transformation. 1974. Berlin: Springer.

26. Brown J.W., Churchill R.V. Complex Variables and Applications (7th ed.). 2004. New York: McGraw Hill.

27. Glazyrin, S. I. // Astron. Lett. 2013. V. 39. P. 221–226.

28. Gorodnichev K.E. et al. // J. Phys.: Conf. Ser. 2020. V. 1686 (1). P. 012025.


Review

For citations:


Gorodnichev K.E., Glazyrin S.I., Ilnitsky D.K., Kuratov S.E. Influence of Density Perturbations on the Stability of the Inner Ice Boundary in Ice Targets. Nuclear Physics and Engineering. 2023;14(2):109-118. (In Russ.) https://doi.org/10.56304/S2079562922030162

Views: 32


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)