Influence of Density Perturbations on the Stability of the Inner Ice Boundary in Ice Targets
https://doi.org/10.56304/S2079562922030162
Abstract
The inertial confinement fusion has not been achieved yet. The reasons for this phenomenon are not fully understood. In our opinion, the main factor influencing the decrease in the yield is the evolution of hydrodynamic instabilities due to geometric inhomogeneities (surface roughness, the presence of asymmetric elements etc.). The perturbed density field can result from these inhomogeneities. The results of a theoretical study of the influence of density perturbations on the stability of the boundary under accelerated motion are presented in this paper. The performed numerical simulations are compared with theoretical results.
About the Authors
K. E. GorodnichevRussian Federation
Moscow, 127055
S. I. Glazyrin
Russian Federation
Moscow, 127055
D. K. Ilnitsky
Russian Federation
Moscow, 127055
S. E. Kuratov
Russian Federation
Moscow, 127055
References
1. Kline J. et al. // Nucl. Fusion. 2019. V. 59. P. 112018.
2. Abu-Shawared H. et al. // Phys. Rev. Lett. 2022. V. 129. P. 075001.
3. Meezan N.B. et al. // Plasma Phys. Control. Fusion. 2017. V. 59. P. 014021.
4. Koch J.A. et al. // Fusion Sci. Technol. 2001. V. 4. P. 55–66.
5. Bel’kov et al. // J. Exp. Theor. Phys. 2017. V. 124. P. 341–351.
6. Bel’kov et al. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 025011.
7. Clark D.S. et al. // Phys. Plasmas. 2010. V. 17. P. 052703.
8. Clark D.S. et al. // Phys. Plasmas. 2013. V. 20. P. 056318.
9. Smalyuk V.A. et al. // Phys. Plasmas. 2015. V. 22. P. 072704.
10. Peterson J.R., Johnson B.M., Haan S.W. // Phys. Plasmas. 2018. V. 25. P. 092705.
11. Mikaelian K.O. // Phys. Rev. Fluids. 2016. V. 1. P. 033601.
12. Bulat P.V., Volkov K.N. // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16 (3). P. 550–558.
13. Luo X et al. // Phys. Rev. E. 2016. V. 93. P. 013101.
14. Zeng S., Takayama K. // Acta Astronaut. 1996. V. 38 (11). P. 829–838.
15. Zhou Y. // Phys. Rep. 2017. V. 723–725. P. 1–160.
16. Abarzhi S.I. // Phil. Trans. R. Soc. A. 2010. V. 368 (1916). P. 1809–1828.
17. Brouillette M. // Ann. Rev. Fluid Mech. 2002. V. 34 (1). P. 445–468.
18. Taylor G.I. // Proc. R. Soc. A. 1950. V. 201 (1065). P. 192–196.
19. Rayleigh L. // Proc. London Math. Soc. 1883. V. 14. P. 170–177.
20. Landau L.D., Lifshitz E.M. Fluid Mechanics. 1987. New York: Pergamon.
21. Haan S.W. et al. // Phys. Plasmas. 2011. V. 18. P. 1001.
22. Bel’kov S.A. et al. // J. Exp. Theor. Phys. 2015. V. 121 (4). P. 686–698.
23. Gorodnichev K.E. et al. // Phys. Fluids. 2020. V. 32. P. 034101.
24. Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. 2001. London: Chapman and Hall.
25. Doetsch G. Introduction to the Theory and Application of the Laplace Transformation. 1974. Berlin: Springer.
26. Brown J.W., Churchill R.V. Complex Variables and Applications (7th ed.). 2004. New York: McGraw Hill.
27. Glazyrin, S. I. // Astron. Lett. 2013. V. 39. P. 221–226.
28. Gorodnichev K.E. et al. // J. Phys.: Conf. Ser. 2020. V. 1686 (1). P. 012025.
Review
For citations:
Gorodnichev K.E., Glazyrin S.I., Ilnitsky D.K., Kuratov S.E. Influence of Density Perturbations on the Stability of the Inner Ice Boundary in Ice Targets. Nuclear Physics and Engineering. 2023;14(2):109-118. (In Russ.) https://doi.org/10.56304/S2079562922030162