Preview

Nuclear Physics and Engineering

Advanced search

Application of Fine Dispersion of Particles to Intensify Water Desalination Using Solar Radiation

https://doi.org/10.56304/S2079562920060421

Abstract

The strong absorbing properties of suspensions with nanoparticles and the possibility of organizing boiling in volume make this process very promising for the creation of solar desalination plants on its basis. The paper presents an experimental study of the boiling of a suspension based on water with the addition of sea salt, carried out on a laboratory system with the condensate recycling. Three types of particles were used in the study: multilayer carbon nanotubes with an average diameter of ~60 nm and a length of ~5 μm, 110-nm particles of iron oxide Fe3O4, and a commercial modifier of industrial composition based on carbon nanotubes. Particle mass concentrations varied from 0.5 to 10%. To study the influence of sea salt on the boiling process of nanofluids, similar experiments were carried out for nanofluids based on distilled water. Comparing the results of an experimental study for nanofluids based on distilled and salt water, it was found that the addition of sea salt can lead to both an increase in the steam generation rate and a decrease depending on the type of nanoparticles and their concentration. The presence of sea salt in the nanotube-based suspension increases the steam flow rate by 7.5%, while for iron oxide particles, the change in the steam flow rate varies from –0.5 to 12%, depending on the particle concentration. For suspensions based on a commercial modifier, the change in the rate of steam generation in the presence of salt also depends on the particle fraction and varies from –5.2 to 7%. The optimal composition of the suspension, which provides the highest rate of steam generation, was determined by comparing the obtained experimental data with the experiment on boiling seawater in a blackened steam generator. Adding 5% carbon nanotubes to salt water results in the largest increase in steam generation rate by 23% compared to boiling salt water in a blackened flask. The results of this work can become the basis for the development of solar desalination plants based on fine dispersions.

About the Authors

A. V. Olkhovskii
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

A. V. Olkhovskii,

Moscow, 115409.



V. S. Yunin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

V. S. Yunin,

Moscow, 115409.



D. M. Kuzmenkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

D. M. Kuzmenkov, 

Moscow, 115409.



P. G. Struchalin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Western Norway University of Applied Sciences
Russian Federation

P. G. Struchalin,

Moscow, 115409;

Bergen, 5063 (Norway).



K. V. Kutsenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

K. V. Kutsenko, 

Moscow, 115409.



B. V. Balakin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Western Norway University of Applied Sciences
Russian Federation

B. V. Balakin,

Moscow, 115409;

Bergen, 5063 (Norway).



References

1. Всемирная программа ЮНЕСКО по оценке водных ресурсов. WWAP (UNESCO World Water Assessment Programme). 2019. The United Nations World Water Development Report 2019: Leaving No One behind. Paris, UNESCO.

2. Elimelech M., Phillip W.A. // Science. 2011. V. 333. P. 712–717.

3. Lienhard J.H., Antar M.A., Bilton A., Blanco J., Zaragoza G. // Ann. Rev. Heat Transfer. 2012. V. 15. New York: Begel House. Ch. 9. Solar Desalination. P. 277–347.

4. Khawaji A.D., Kutubkhanah I.K., Wie J.-M. // Desalination. 2008. V. 221. P. 47–69.

5. Lucas M., Kosinski P., Balakin B.V. // AIP Conf. Proc. 2019. V. 2116. P. 30011.

6. Sani E., Papi N., Mercatelli L., Zyła G. // Renew. Energy. 2018. V. 126. P. 692–698.

7. Wang Y., Zaytsev M.E., The H.L., Eijkel J.C.T., Zandvliet H.J.W., Zhang X., Lohse D. // ACS Nano. 2017. V. 11. No. 2. P. 2045–2051.

8. Neumann O., Urban A.S., Day J., Lal S., Nordlander P., Halas N.J. // ACS Nano. 2013. V. 7. P. 42–49.

9. Jin H., Lin G., Bi L., Zeiny A., Wen D. // Nano Energy. 2016. V. 28. P. 397–406.

10. Ulset E.T., Kosinski P., Zabednova Y., Zhdaneev O.V., Struchalin P.G., Balakin B.V. // Nano Energy. 2018. V. 50. P. 339–346.

11. DEALTOM. http://dealtom.ru/. 2021.

12. Государственная служба стандартных справочных данных. ГСССД 77-84 “Морская вода. Шкала практичной солености”. 1978. Москва: Национальный комитет по океанографическим исследованиям (СКОР) и ЮНЕСКО.

13. Osram. https://www.osram.com/. 2021.

14. Struchalin P.G., Thon H., Kuzmenkov D.M., Kutsenko K.V., Kosinski P., Balakin B.V. // Int. J. Heat Mass Transf. 2020. V. 158. P. 119987.

15. Ulset E.T., Kosinski P., Balakin B.V. // Appl. Therm. Eng. 2018. V. 137. P. 62–65.

16. Sharaf O.Z., Taylor R.A., Abu-Nada E. // Phys. Reports. 2020. V. 867. P. 1–84.


Review

For citations:


Olkhovskii A.V., Yunin V.S., Kuzmenkov D.M., Struchalin P.G., Kutsenko K.V., Balakin B.V. Application of Fine Dispersion of Particles to Intensify Water Desalination Using Solar Radiation. Nuclear Physics and Engineering. 2021;12(4):246-252. (In Russ.) https://doi.org/10.56304/S2079562920060421

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)