Development of Algorithms for Analysis of Small-Angle X-Ray Scattering Data from Polydisperse and Partially Ordered Systems
https://doi.org/10.56304/S2079562922050244
Abstract
The small-angle X-ray scattering method allows studying the structure of solutions of proteins, polymers and metal nanoparticles in the range of 1–200 nm. The development of new and improvement of the available algorithms for the analysis of experimental data of small-angle X-ray scattering data is an important task. This study presents a number of algorithms that allow one to find the particle size distribution functions, restore the intensity profiles of individual components in protein mixtures, and estimate the size of the crystallinity region and spacing distances in partially ordered systems. A number of algorithms are implemented in computer programs using the cross-platform graphics library Qt, which significantly expands the number of the potential users. The efficiency of the algorithms has been demonstrated on a number of theoretical and experimental small-angle X-ray scattering data.
About the Authors
P. V. KonarevRussian Federation
Moscow, 119333; Moscow, 123182
V. V. Volkov
Russian Federation
Moscow, 123182
References
1. Svergun D.I. et al. Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules. 2013. Oxford: Oxford Univ. Press.
2. Jeffries C.M. et al. // Nat. Prot. 2016. V. 11. P. 2122.
3. Mathew E., Mirza A., Menhart N. // J. Synchr. Rad. 2004. V. 11. P. 314.
4. Konarev P.V. et al. // Protein Sci. 2022. V. 31. P. 269.
5. Panjkovich A., Svergun D.I. // Bioinformatics. 2018. V. 34. P. 1944.
6. Svergun D.I. // J. Appl. Cryst. 1992. V. 25 (4). P. 495.
7. Glatter O. // J. Appl. Cryst. 1980. V. 13 (1). P. 7.
8. Volkov V.V., Konarev P.V., Kryukova A.E. // JETP Lett. 2020. V. 112 (9). P. 591.
9. Bressler I., Pauw B.R., Thünemann A.F. // J. Appl. Cryst. 2015. V. 48 (3). P. 962.
10. Konarev P.V. et al. // J. Appl. Cryst. 2003. V. 36 (5). P. 1277.
11. Breßler I., Kohlbrecher J., Thünemann A.F. // J. Appl. Cryst. 2015. V. 48 (5). P. 1587.
12. Alina G. et al. // SasView for Small-Angle Scattering Analysis. http://www.sasview.org/.
13. Keller H.R., Massart D.L. // Chemom. Intell. Lab. Syst. 1992. V. 12 (3). P. 209.
14. Manalastas-Cantos K. et al. // J. Appl. Cryst. 2021. V. 54 (1). P. 343.
15. Petoukhov M.V. et al. // J. Appl. Cryst. 2012. V. 45 (2). P. 342.
16. Svergun D.I. et al. // J. Chem. Phys. 2000. V. 113 (4). P. 1651.
17. Schulz G.V. // Z. Phys. Chem. B. 1935. V. 30. P. 379.
18. Wagner J. // J. Appl. Cryst. 2012. V. 45 (3). P. 513.
19. Hansen J.-P., Hayter J.B. // Mol. Phys. 1982. V. 46. P. 651.
20. Vainshtein B.K. Diffraction of X-rays by Chain Molecules. 1966. Amsterdam: Elsevier.
21. Bronstein L.M., Karlinsey R.L., Yi Z. et al. // Chem. Mater. 2007. V. 19 (25). P. 6258.
22. MINPACK: Numerical Library for Function Minimization and Least-Squares Solutions. https://www.math.utah.edu/software/minpack.html.
Review
For citations:
Konarev P.V., Volkov V.V. Development of Algorithms for Analysis of Small-Angle X-Ray Scattering Data from Polydisperse and Partially Ordered Systems. Nuclear Physics and Engineering. 2023;14(4):408-414. (In Russ.) https://doi.org/10.56304/S2079562922050244