Preview

Nuclear Physics and Engineering

Advanced search

Broadband CO Laser with Intracavity Frequency Conversion for Plasma Diagnostics

https://doi.org/10.56304/S207956292201016X

Abstract

In this work, we experimentally study intracavity frequency conversion of CO laser radiation in a nonlinear ZnGeP2 crystal under noncritical phase matching. Various configurations of a laser cavity are considered, in one of which the nonlinear crystal itself was an output mirror. The spectrum of the converted radiation was shifted into the short-wavelength region due to the temperature tuning of the phase matching in the nonlinear crystal. The maximum average lasing power was obtained at room crystal temperature and an output mirror with a transmission T ~ 10% for the fundamental band, and reached ~7.0 mW. The power ratio of sum frequency generation and the CO laser radiation was ~16%, which turned out to be higher than the value obtained earlier with the BaGa2GeSe6 crystal (11.5%) at the same laser facility.

About the Authors

A. A. Ionin
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


I. O. Kinyaevskiy
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


Yu. M. Klimachev
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


A. Yu. Kozlov
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


A. A. Kotkov
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


A. M. Sagitova
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


D. V. Sinitsyn
Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
Russian Federation


References

1. <em>Кузнецов А.П.</em> Лазерная интерферометрия в диагностике импульсной плазмы [Laser Interferometry in the Pulsed Plasma Diagnostic]. дис. д.ф.-м.н. 01.04.21. Москва. 2012.

2. <em>Van Zeeland M.A., Boivin R.L., Brower D.L., et al.</em> // Rev. Sci. Instrum. 2013. V. 84. No. 4. P. 043501.

3. <em>Fedotov O.G., Fomin V.M.</em> // Tech. Phys. 2018. V. 63. No. 2. P. 250–256.

4. <em>Ionin A.A., Kurnosov A.K., Napartovich A.P., Seleznev L.V.</em> // Laser Phys. 2010. V. 20. P. 144–186.

5. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Laser Phys. 2018. V. 28. No. 2. P. 025401.

6. <em>Андреев С.Н., Очкин В.Н.</em> // Энциклопедия низкотемпературной плазмы: Вводный том. Книга II. [Encyclopedia of Low-Temperature Plasma: Introductory Volume II]. Ред. Фортов В.Е. 2000. Москва: МАИК “Наука/Интерпериодика”, (Энциклопедическая серия). С. 583–585.

7. <em>Derevyashkin S.P., Ionin A.A., Kinyaevskiy I.O., et al.</em> // Phys. Procedia. 2015. V. 71. P. 247–251.

8. <em>Andreev Yu.M., Budilova O.V., Ionin A.A., et al.</em> // Opt. Lett. 2015. V. 40. No. 13. P. 2997–3000.

9. <em>Ionin A.A., Badikov D.V., Badikov V.V., et al.</em> // Opt. Lett. 2018. V. 43. No. 18. P. 4358–4361.

10. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Infrared Phys. Technol. 2019. V. 102. P. 103009.

11. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Opt. Laser Technol. 2019. V. 115. P. 205–209.

12. <em>Ionin A.A., Kozlov A.Yu., Seleznev L.V., Sinitsyn D.V.</em> // Opt. Commun. 2009. V. 282. P. 629–634.

13. <em>Chebotarev I.A., Ionin A.A., Kinyaevskiy I.O., et al.</em> // Opt. Laser Technol. 2020. V. 131. P. 106431.


Review

For citations:


Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., Kozlov A.Yu., Kotkov A.A., Sagitova A.M., Sinitsyn D.V. Broadband CO Laser with Intracavity Frequency Conversion for Plasma Diagnostics. Nuclear Physics and Engineering. 2022;13(1):91-98. (In Russ.) https://doi.org/10.56304/S207956292201016X

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)