How to Determine the Fano Factor in a Semiconductor Material from Experimental Data?
https://doi.org/10.56304/S2079562922050438
Abstract
Nowadays, there are formulas in the literature for determining the Fano factor in a semiconductor material from experimental data. However, the existing formulas do not take into account the contribution of fluctuations of the induced charge on the detector electrodes, due to the capture of electrons and holes by traps, as well as the contribution of the induced charge fluctuations due to the distribution function of generation of the electron hole pairs in the bulk of the semiconductor detector. In this work, a formula for the energy resolution of a semiconductor detector was obtained, which allows to determine the contributions of various processes to the energy resolution and their dependence on the properties of the semiconductor material of the detector and the characteristics of the detected particle. The obtained formula for the energy resolution of a semiconductor detector allows us to formulate the conditions under which it is possible to obtain information on the Fano factor and fluctuations of the induced charge on the detector electrodes due to the capture of electrons and holes by traps, and the distribution function of generation of electron-hole pairs in its volume from the characteristics of the output signal. As an example, using experimental data, the Fano factor in CdTe semiconductor material has been determined from experimental data.
About the Author
V. V. SamedovRussian Federation
Moscow, 115409
References
1. Fano U. // Phys. Rev. 1946. V. 70. P. 44.
2. Fano U. // Phys. Rev. 1947. V. 72. P. 26.
3. Ricker G.R. et al. // Rev. Sci. Instrum. 1982. V. 53. P. 700.
4. Ishida N., Kikuchi J., Doke T. et al. // Phys. Rev. A. 1992. V. 46. P. 1676.
5. Lepi M.C. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2000. V. 439. P. 239.
6. Lowe B.G., Sareen R.A. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2007. V. 576. P. 367.
7. Owens A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. 484. P. 242.
8. Papp T. et al. // X-Ray Spectrom. 2005. V. 34. P. 106.
9. Owens A. Compound Semiconductor Radiation Detectors. 2012. Boca Raton: CRC Press.
10. Iwanczyk J.S., Schnepple W.F., Masterson M.J. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1992. V. 322. P. 421.
11. Самедов В.В. // Ядерная физика и инжиниринг. 2023. Т. 14 (3). С. 248 [Samedov V.V. // Phys. At. Nucl. 2022. V. 85 (10). P. 1701].
12. Devanathan R. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2006. V. 565. P. 637.
13. Самедов В.В. // Ядерная физика и инжиниринг. 2023. Т. 14 (2). С. 151 [Samedov V.V. // Phys. At. Nucl. 2022. V. 85 (10). P. 1520].
14. Самедов В.В. // Ядерная физика и инжиниринг. 2016. Т. 7 (4). С. 298 [Samedov V.V. // Phys. At. Nucl. 2017. V. 80 (9). P. 1489].
15. Феллер В. Введение в теорию вероятностей и ее приложения. 1968. Москва: Мир. Том 1.
16. Самедов В.В. // Ядерная физика и инжиниринг. 2015. Т. 6 (5−6). С. 279 [Samedov V.V. // Phys. At. Nucl. 2016. V. 79 (9). P. 1402].
17. Samedov V.V. // X-Ray Spectrom. 2011. V. 40. P. 7.
18. Sammartini M. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2018. V. 910. P. 168.
19. Redus R.H. et al. // MRS Symp. Proc. 1997. V. 487. P. 101.
20. Bale G. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1999. V. 436. P. 150.
21. Takahashi T. et al. // IEEE Trans. Nucl. Sci. 2001. V. 48. P. 287.
22. Dabrowski A.J., Iwanczyk J., Triboulet R. // Nucl. Instrum. Methods. 1974. V. 118. P. 531.
23. Hubbell J.H., Seltzer S.M. // X-Ray Mass Attenuation Coefficients. NIST Standard Reference Data-base. 2004. No. 126.
24. Sammartini M. et al. // Proc. 2019 IEEE NSS-MIC Conf. 2019. P. 106.
25. Hecht K. // Zeitschr. Phys. 1932. V. 77. P. 235.
Review
For citations:
Samedov V.V. How to Determine the Fano Factor in a Semiconductor Material from Experimental Data? Nuclear Physics and Engineering. 2023;14(4):363-372. (In Russ.) https://doi.org/10.56304/S2079562922050438