Preview

Nuclear Physics and Engineering

Advanced search

Determining the Size of the Hardening Zone by Temperature Fields During Laser Processing

https://doi.org/10.56304/S2079562922050190

Abstract

Obtaining a uniform hardening of the near-surface area to a given depth requires precise selection and control of laser radiation parameters, depending on the part geometry and its properties. Since laser irradiation is performed locally with step-by-step processing of the entire surface, the accumulated heat leads to an increase in the hardening depth and surface melting. In order to avoid depth unevenness, it is necessary to vary laser energy supply during processing to maintain a stationary heating of the material. Experimental selection of technological parameters usually takes an excessive amount of time and material resources. This article presents a technique of mathematical modeling of the high-carbon tool steels hardening process by calculating the temperature fields induced by laser radiation. The boundary of the hardening zone was determined as the isotherm of the corresponding austenitizing critical temperature in accordance with the heating rate. Experimental verification of the model was carried out on tool steels with carbon content of 0.7% and 1.2%. The influence of the main processing technological parameters (radiation power, laser spot diameter and scanning speed) on the hardening zone size is shown. The paper also presents the use of the built model for selection of the technological parameters of multi-track treatment to harden material to a constant depth without surface melting. The effect of back tempering in overlapped regions is also considered.

About the Authors

E. D. Ishkinyaev
IPG IRE-Polus; National Research Nuclear University (Moscow Engineering Physics Institute)
Russian Federation

Fryazino, 141195;

Moscow, 115409



E. V. Khriptovich
IPG IRE-Polus; Bauman Moscow State Technical University
Russian Federation

Fryazino, 141195;

Moscow, 105005



V. D. Voronov
IPG IRE-Polus; National Research Nuclear University (Moscow Engineering Physics Institute)
Russian Federation

Fryazino, 141195;

Moscow, 115409



V. N. Petrovskiy
National Research Nuclear University (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



I. N. Shiganov
Bauman Moscow State Technical University
Russian Federation

Moscow, 105005



References

1. Klocke F., Schulz M., Gräfe S. // Coatings. 2017. V. 7 (6). P. 77. https://doi.org/10.3390/coatings7060077

2. Ogawa K.et al. // Adv. Mater. Process. Technol. 2019. V. 5 (3). P. 379−385. https://doi.org/10.1080/2374068X.2019.1614360

3. Mole N. et al. // Metals (Basel). 2018. V. 8 (12). P. 1016. https://doi.org/10.3390/met8121016

4. Marimuthu P. // Emerg. Mater. Res. 2019. V. 8 (2). P. 188−205. https://doi.org/10.1680/jemmr.16.00145

5. Barka N. et al. // Coatings. 2020. V. 10 (4). P. 342. https://doi.org/10.3390/coatings10040342

6. Bailey N.S., Tan W., Shin Y.C. // Surf. Coat. Technol. 2009. V. 203 (14). P. 2003−2012. https://doi.org/10.1016/j.surfcoat.2009.01.039

7. Orazi L. et al. // Appl. Surf. Sci. 2010. V. 256 (6). P.1913−1919. https://doi.org/10.1016/j.apsusc.2009.10.037

8. Yaakoubi M., Kchaou M., Dammak F. // Comput. Mater. Sci. V. 68. P. 297−306. https://doi.org/10.1016/j.commatsci.2012.10.001

9. Ki H., So S. // Opt. Laser Technol. 2012. V. 44 (7). P. 2106−2114. https://doi.org/10.1016/j.optlastec.2012.03.018

10. Patwa R., Shin Y.C. // Int. J. Mach. Tools Manuf. 2007. V. 47 (2). P. 307−320. https://doi.org/10.1016/j.ijmachtools.2006.03.016

11. Orazi L., Rota A., Reggiani B. // Int. J. Mech. Mater. Eng. 2021. V. 16 (1). P. 1. https://doi.org/10.1186/s40712-020-00124-0

12. Bojinović M., Mole N., Štok B. // Surf. Coatings Technol. 2015. V. 273 (1). P. 60−76. https://doi.org/10.1016/j.surfcoat.2015.01.075

13. Lakhkar R.S., Shin Y.C., Krane M.J.M. // Mater. Sci. Eng. A. 2008. V. 480 (1−2). P. 209−217. https://doi.org/10.1016/j.msea.2007.07.054

14. Giorleo L., Previtali B., Semeraro Q. // Int. J. Adv. Manuf. Technol. 2011. V. 54 (9-12). P. 969−977. https://doi.org/10.1007/s00170-010-3008-5

15. Indhu R. et al. // Lasers Manuf. Mater. Process. 2018. V. 5 (4). P. 458−481. https://doi.org/10.1007/s40516-018-0075-1


Review

For citations:


Ishkinyaev E.D., Khriptovich E.V., Voronov V.D., Petrovskiy V.N., Shiganov I.N. Determining the Size of the Hardening Zone by Temperature Fields During Laser Processing. Nuclear Physics and Engineering. 2023;14(3):289-295. (In Russ.) https://doi.org/10.56304/S2079562922050190

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)