Broadband CO Laser with Intracavity Frequency Conversion for Plasma Diagnostics
https://doi.org/10.56304/S207956292201016X
Abstract
In this work, we experimentally study intracavity frequency conversion of CO laser radiation in a nonlinear ZnGeP2 crystal under noncritical phase matching. Various configurations of a laser cavity are considered, in one of which the nonlinear crystal itself was an output mirror. The spectrum of the converted radiation was shifted into the short-wavelength region due to the temperature tuning of the phase matching in the nonlinear crystal. The maximum average lasing power was obtained at room crystal temperature and an output mirror with a transmission T ~ 10% for the fundamental band, and reached ~7.0 mW. The power ratio of sum frequency generation and the CO laser radiation was ~16%, which turned out to be higher than the value obtained earlier with the BaGa2GeSe6 crystal (11.5%) at the same laser facility.
Keywords
About the Authors
A. A. IoninRussian Federation
I. O. Kinyaevskiy
Russian Federation
Yu. M. Klimachev
Russian Federation
A. Yu. Kozlov
Russian Federation
A. A. Kotkov
Russian Federation
A. M. Sagitova
Russian Federation
D. V. Sinitsyn
Russian Federation
References
1. <em>Кузнецов А.П.</em> Лазерная интерферометрия в диагностике импульсной плазмы [Laser Interferometry in the Pulsed Plasma Diagnostic]. дис. д.ф.-м.н. 01.04.21. Москва. 2012.
2. <em>Van Zeeland M.A., Boivin R.L., Brower D.L., et al.</em> // Rev. Sci. Instrum. 2013. V. 84. No. 4. P. 043501.
3. <em>Fedotov O.G., Fomin V.M.</em> // Tech. Phys. 2018. V. 63. No. 2. P. 250–256.
4. <em>Ionin A.A., Kurnosov A.K., Napartovich A.P., Seleznev L.V.</em> // Laser Phys. 2010. V. 20. P. 144–186.
5. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Laser Phys. 2018. V. 28. No. 2. P. 025401.
6. <em>Андреев С.Н., Очкин В.Н.</em> // Энциклопедия низкотемпературной плазмы: Вводный том. Книга II. [Encyclopedia of Low-Temperature Plasma: Introductory Volume II]. Ред. Фортов В.Е. 2000. Москва: МАИК “Наука/Интерпериодика”, (Энциклопедическая серия). С. 583–585.
7. <em>Derevyashkin S.P., Ionin A.A., Kinyaevskiy I.O., et al.</em> // Phys. Procedia. 2015. V. 71. P. 247–251.
8. <em>Andreev Yu.M., Budilova O.V., Ionin A.A., et al.</em> // Opt. Lett. 2015. V. 40. No. 13. P. 2997–3000.
9. <em>Ionin A.A., Badikov D.V., Badikov V.V., et al.</em> // Opt. Lett. 2018. V. 43. No. 18. P. 4358–4361.
10. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Infrared Phys. Technol. 2019. V. 102. P. 103009.
11. <em>Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., et al.</em> // Opt. Laser Technol. 2019. V. 115. P. 205–209.
12. <em>Ionin A.A., Kozlov A.Yu., Seleznev L.V., Sinitsyn D.V.</em> // Opt. Commun. 2009. V. 282. P. 629–634.
13. <em>Chebotarev I.A., Ionin A.A., Kinyaevskiy I.O., et al.</em> // Opt. Laser Technol. 2020. V. 131. P. 106431.
Review
For citations:
Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., Kozlov A.Yu., Kotkov A.A., Sagitova A.M., Sinitsyn D.V. Broadband CO Laser with Intracavity Frequency Conversion for Plasma Diagnostics. Nuclear Physics and Engineering. 2022;13(1):91-98. (In Russ.) https://doi.org/10.56304/S207956292201016X