Preview

Nuclear Physics and Engineering

Advanced search

Effect of Interface Ni and Ti Films on Antifriction Properties of Nanolayer Thin-Film WS2/g-C Coatings

https://doi.org/10.56304/S2079562922050396

Abstract

Model thin-film coatings containing laminar WS2 films and nanometer-thick carbon films are created by the reactive pulsed laser deposition technique. To activate the growth of the graphite-like state, the carbon films (g-C) were deposited on the surface of nickel or titanium films formed between WS2 and g-C layers. It is found that the WS2/Ni/g-C/WS2 coating is apt to manifest a very low coefficient of friction (less than 0.013) in tests in dry air without lubrication. The coating with a titanium interface film does not possess such properties. The structural state of the coating before and after the tribotest was monitored by micro-Raman spectroscopy (MRS). Possible causes of the different behavior of coatings with the chosen metal film.

About the Authors

R. I. Romanov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



D. V. Fominskii
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



V. A. Kas’yanenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



M. D. Gritskevich
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



V. Yu. Fominskii
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



References

1. Zhenbin G., Xiaolong J. et al. // Appl. Surf. Sci. 2017. V. 413. P. 381–386. https://doi.org/10.1016/j.apsusc.2017.04.057

2. Fominski V., Demin M., Nevolin V. et al. // Nanomaterials. 2020. V. 10 (4). P. 653. https://doi.org/10.3390/nano10040653

3. Григорьев С.Н., Фоминский В.Ю., Неволин В.Н. и др. // Перспект. матер. 2014. № 8. С. 31−41.

4. Berman D., Narayanan B., Cherukara M. et al. // Nat. Commun. 2018. V. 9 (1). P. 1164. https://doi.org/10.1038/s41467-018-03549-6

5. Jiang B., Zhao Z., Gong Z. et al. // Appl. Surf. Sci. 2020. V. 520, P. 146303. https://doi.org/10.1016/j.apsusc.2020.146303

6. Cao H., Momand J., Syari’ati A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. Р. 28843−28854. https://doi.org/10.1021/acsami.1c06061

7. Kumar P., Lahiri I., Mitra A. // Result Phys. 2019. V. 14. P. 102350. https://doi.org/10.1016/j.rinp.2019.102350

8. Fominski V., Fominski D., Romanov R. et al. // Nanomaterials. 2020. V. 10 (12). P. 2456. https://doi.org/10.3390/nano10122456


Review

For citations:


Romanov R.I., Fominskii D.V., Kas’yanenko V.A., Gritskevich M.D., Fominskii V.Yu. Effect of Interface Ni and Ti Films on Antifriction Properties of Nanolayer Thin-Film WS2/g-C Coatings. Nuclear Physics and Engineering. 2023;14(3):228-233. (In Russ.) https://doi.org/10.56304/S2079562922050396

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)