Spectroscopic Studies of Crystalline Neon Film Condensed on a Gold Surface
https://doi.org/10.56304/S2079562922050268
Abstract
Solid neon film condensed on a gold surface and crystallized in the face-centered cubic (FCC) lattice, has been studied using reflected electron energy-loss spectroscopy (REELS) at the temperature of 5 K. The experimental REEL spectra are compared with theoretical calculations using density-functional theory (DFT), GW approximation, random-phase approximation (RPA) and the Bethe–Salpeter equation (BSE). In the calculations many electron corrections such as the local-field dielectric screening, quasiparticles, and excitonic effects have been taken care of. The calculated electronic bandgap is 21.5 eV, but the excitonic peaks in REELS are found to set in at ~18 eV. Thus, a solid neon film, being a wide-gap dielectric, is a promising material for implanting Th and studying its low-lying nuclear transition at 8.2 eV.
About the Authors
U. N. KurelchukRussian Federation
Moscow , 115409
P. V. Borisyuk
Russian Federation
Moscow , 115409
E. V. Chubunova
Russian Federation
Moscow , 115409
M. S. Domashenko
Russian Federation
Moscow , 115409
S. Z. Karazhanov
Norway
P.O. Box 40, NO 2027-Kjeller
N. N. Kolachevsky
Russian Federation
Moscow , 115409;
Moscow, 119991
Yu. Yu. Lebedinskii
Russian Federation
Moscow , 115409
D. A. Myzin
Russian Federation
Moscow , 115409
A. V. Nikolaev
Russian Federation
Moscow , 115409;
Moscow, 119991
E. V. Tkalya
Russian Federation
Moscow , 115409;
Moscow, 119991;
Moscow 115191
References
1. Seiferle B. et al. // Nature. 2019. V. 573 (7773). P. 243.
2. Peik E., Tamm C. // Europhys. Lett. 2003. V. 61 (2). P. 181.
3. Tkalya E.V. // Phys. Rev. Lett. 2011. V. 106 (16). P. 162501.
4. Tkalya E.V. // Phys. Rev. Lett. 2020. V. 124 (24). P. 242501.
5. Tkalya E.V., Zherikhin A.N., Zhudov V.I // Phys. Rev. C. 2000. V. 61 (6). P. 064308.
6. Tkalya E.V. // JETP Lett. 2000. V. 71. P. 311.
7. Kurelchuk U.N. et al. // Mater. Lett. 2021. V. 306. P. 130930.
8. Nikolaev A.V., Tkalya E.V. // Phys. Rev. A. 2021. V. 104 (3). P. 032819.
9. Batchelder D.N., Losee D.L., Simmons R.O. // Phys. Rev. 1967. V. 162 (3). P. 767−775.
10. Giannozzi P. et al. // J. Chem. Phys. 2020. V. 152 (15). P. 154105.
11. Hamann D.R. // Phys. Rev. B. 2013. V. 88 (8). P. 085117.
12. Lee K. et al. // Phys. Rev. B. 2010. V. 82 (8). P. 081101.
13. Marini A. et al. // Comput. Phys. Commun. 2009. V. 180 (8). P. 1392.
14. Sangalli D. et al. // J. Phys.: Condens. Matter. 2019. V. 31 (32). P. 325902.
Review
For citations:
Kurelchuk U.N., Borisyuk P.V., Chubunova E.V., Domashenko M.S., Karazhanov S.Z., Kolachevsky N.N., Lebedinskii Yu.Yu., Myzin D.A., Nikolaev A.V., Tkalya E.V. Spectroscopic Studies of Crystalline Neon Film Condensed on a Gold Surface. Nuclear Physics and Engineering. 2023;14(3):224-227. (In Russ.) https://doi.org/10.56304/S2079562922050268