Simulation of Current Distribution and Energy Losses in a Superconducting CORC Cable
https://doi.org/10.56304/S2079562922050293
Abstract
The results of numerical simulation of the characteristics of a superconducting CORC cable under synchronous cyclic loading by electric current and magnetic field under liquid neon cooling are presented. Distributions of the magnetic field and currents in the system, mechanical stresses and deformations, and energy losses occurring during remagnetization by the magnetic field and electric current are calculated. The features of electrodynamic and thermophysical processes occurring in the system under synchronous current and magnetic-field loading at different winding angles of HTS tapes are shown. The simulation was performed by the finite element method in the Comsol Multiphysics software. The model is designed for calculating the magnetic system of a superconducting inductive energy storage system as part of the Nuclotron based Ion Collider fAcility (NICA), which is under construction at the Laboratory of High Energy Physics (HEPL) of the Joint Institute for Nuclear Research (JINR).
About the Authors
I. V. MartirosyanRussian Federation
Moscow, 115409
I. K. Mikhailova
Russian Federation
Moscow, 115409
S. V. Pokrovskii
Russian Federation
Moscow, 115409
M. S. Novikov
Russian Federation
Dubna, Moscow oblast, 141980
I. A. Rudnev
Russian Federation
Moscow, 115409
References
1. Wang X. et al. // Supercond. Sci. Technol. 2018. V. 31 (4). P. 045007.
2. Jin H. et al. // Nucl. Fusion. 2020. V. 60 (9). P. 096028.
3. Сытников В.Е. // Энергия единой сети. Т. 1. С. 16–29.
4. Van der Laan D.C., Weiss J.D., McRae D.M. // Supercond. Sci. Technol. 2019. V. 32 (3). P. 033001.
5. Фетисов С.С. // Кабели и провода. 2014. Т. 3. С. 22–29.
6. Van der Laan D.C. // Supercond. Sci. Technol. 2009. V. 22 (6). P. 065013.
7. Van der Laan D.C., Lu X.F., Goodrich L.F. // Supercond. Sci. Technol. 2011. V. 24 (4). P. 042001.
8. Mulder T. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 279 (1). P. 012033.
9. Barth C. High Temperature Superconductor Cable Concepts for Fusion Magnets. 2013. Karlsruhe: KIT Sci.
10. Ashok K.B. et al. // Phys. C (Amsterdam, Neth.). 2021. V. 582. P. 1353828.
11. Wang Y. et al. // Supercond. Sci. Technol. 2019. V. 32 (2). P. 025003.
12. Fietz W.H. et al. // IEEE Trans. Appl. Supercond. 2016. V. 26. (4). P. 1–5.
13. Anischenko I., Pokrovskii S., Rudnev I., Osipov M. // Supercond. Sci. Technol. 2019. V. 32 (10). P. 105001.
14. Anischenko, Pokrovskii S.V., Rudnev I.A., Osipov M.A., Abin D.A. // J. Phys.: Conf. Ser. 2019. V. 1293. P. 012064.
15. https://www.superox.ru/documents/.
16. Wesche R. // Proc. HTS Fusion Conductor Workshop. Karlsruhe, May 26–27, 2011.
17. Jang S. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13 (2). P. 2956–2959.
18. Lua J., Choi E.S., Zhou H.D. // J. Appl. Phys. 2008. V. 103. P. 064908.
19. Zeisberger M. et al. // Supercond. Sci. Technol. 2005. V. 18 (2). P. S202.
Review
For citations:
Martirosyan I.V., Mikhailova I.K., Pokrovskii S.V., Novikov M.S., Rudnev I.A. Simulation of Current Distribution and Energy Losses in a Superconducting CORC Cable. Nuclear Physics and Engineering. 2023;14(4):345-355. (In Russ.) https://doi.org/10.56304/S2079562922050293