Preview

Nuclear Physics and Engineering

Advanced search

Simulation of Current Distribution and Energy Losses in a Superconducting CORC Cable

https://doi.org/10.56304/S2079562922050293

Abstract

The results of numerical simulation of the characteristics of a superconducting CORC cable under synchronous cyclic loading by electric current and magnetic field under liquid neon cooling are presented. Distributions of the magnetic field and currents in the system, mechanical stresses and deformations, and energy losses occurring during remagnetization by the magnetic field and electric current are calculated. The features of electrodynamic and thermophysical processes occurring in the system under synchronous current and magnetic-field loading at different winding angles of HTS tapes are shown. The simulation was performed by the finite element method in the Comsol Multiphysics software. The model is designed for calculating the magnetic system of a superconducting inductive energy storage system as part of the Nuclotron based Ion Collider fAcility (NICA), which is under construction at the Laboratory of High Energy Physics (HEPL) of the Joint Institute for Nuclear Research (JINR).

About the Authors

I. V. Martirosyan
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



I. K. Mikhailova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



S. V. Pokrovskii
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



M. S. Novikov
Joint Institute for Nuclear Research
Russian Federation

Dubna, Moscow oblast, 141980



I. A. Rudnev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



References

1. Wang X. et al. // Supercond. Sci. Technol. 2018. V. 31 (4). P. 045007.

2. Jin H. et al. // Nucl. Fusion. 2020. V. 60 (9). P. 096028.

3. Сытников В.Е. // Энергия единой сети. Т. 1. С. 16–29.

4. Van der Laan D.C., Weiss J.D., McRae D.M. // Supercond. Sci. Technol. 2019. V. 32 (3). P. 033001.

5. Фетисов С.С. // Кабели и провода. 2014. Т. 3. С. 22–29.

6. Van der Laan D.C. // Supercond. Sci. Technol. 2009. V. 22 (6). P. 065013.

7. Van der Laan D.C., Lu X.F., Goodrich L.F. // Supercond. Sci. Technol. 2011. V. 24 (4). P. 042001.

8. Mulder T. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 279 (1). P. 012033.

9. Barth C. High Temperature Superconductor Cable Concepts for Fusion Magnets. 2013. Karlsruhe: KIT Sci.

10. Ashok K.B. et al. // Phys. C (Amsterdam, Neth.). 2021. V. 582. P. 1353828.

11. Wang Y. et al. // Supercond. Sci. Technol. 2019. V. 32 (2). P. 025003.

12. Fietz W.H. et al. // IEEE Trans. Appl. Supercond. 2016. V. 26. (4). P. 1–5.

13. Anischenko I., Pokrovskii S., Rudnev I., Osipov M. // Supercond. Sci. Technol. 2019. V. 32 (10). P. 105001.

14. Anischenko, Pokrovskii S.V., Rudnev I.A., Osipov M.A., Abin D.A. // J. Phys.: Conf. Ser. 2019. V. 1293. P. 012064.

15. https://www.superox.ru/documents/.

16. Wesche R. // Proc. HTS Fusion Conductor Workshop. Karlsruhe, May 26–27, 2011.

17. Jang S. et al. // IEEE Trans. Appl. Supercond. 2003. V. 13 (2). P. 2956–2959.

18. Lua J., Choi E.S., Zhou H.D. // J. Appl. Phys. 2008. V. 103. P. 064908.

19. Zeisberger M. et al. // Supercond. Sci. Technol. 2005. V. 18 (2). P. S202.


Review

For citations:


Martirosyan I.V., Mikhailova I.K., Pokrovskii S.V., Novikov M.S., Rudnev I.A. Simulation of Current Distribution and Energy Losses in a Superconducting CORC Cable. Nuclear Physics and Engineering. 2023;14(4):345-355. (In Russ.) https://doi.org/10.56304/S2079562922050293

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)