Temperature and Dimensional Dependence of the Irreversibility Field of a Layered High-Temperature Superconductor
https://doi.org/10.56304/S2079562922050335
Abstract
The Monte Carlo method was used in a 2D model of the layered HTS to calculate the magnetization curves of a granulated high-temperature superconductor for various sizes of granules. In this approach magnetization of granules alone is taken into account, while the contribution of the gaps between granules is small and neglected. The irreversibility field has been found to decrease with temperature at the fixed size of granules and increase as the granule size increases at fixed temperature. The time dependence of residual magnetization has been studied at various temperatures. The relaxation rate is shown not to depend on the granule size at low temperatures but to decrease with the increasing size (provided that the granule size is less than 3 μm) at a high temperature when the magnetic flux creep becomes of importance.
About the Authors
A. A. MikhailovRussian Federation
Moscow, 115409
A. N. Maksimova
Russian Federation
Moscow, 115409
A. N. Moroz
Russian Federation
Moscow, 115409
D. M. Gokhfeld
Russian Federation
Krasnoyarsk, 660036
References
1. Bean C.P. // Phys. Rev. Lett. 1962. V. 8 (6). P. 250.
2. Matsushita T. et al. // Phys. C (Amsterdam, Neth.). 1993. V. 213 (34). P. 477.
3. Umezawa A. et al. // Nature (London, U.K.). 1993. V. 364 (6433). P. 129.
4. Ihara N., Matsushita T. // Phys. C (Amsterdam, Neth.). 1996. V. 257 (34). P. 223.
5. Matsushita T. et al. // Appl. Phys. Lett. 1990. V. 56 (20). P. 2039.
6. Garcıa Santiago A. et al. // Appl. Phys. Lett. 2000. V. 77 (18). P. 2900.
7. Hajilou R., Sedghi Gamchi H. // J. Low Temp. Phys. 2020. V. 198 (1). P. 7089.
8. Vlasenko V., Pervakov K., Gavrilkin S. // Supercond. Sci. Technol. 2020. V. 33 (8). P. 084009.
9. Sundar S. et al. // J. Appl. Phys. 2019. V. 125 (12). P. 123902.
10. Гохфельд Д.М. Магнитный гистерезис и плотность критического тока неоднородных сверхпроводников в сильных магнитных полях. Дис. д.ф.-м.н. 01.04.07. 2019. Красноярск.
11. Sánchez-Zacate F.E., Conde-Gallardo A. // Phys. C (Amsterdam, Neth.). 2019. V. 563. P. 1621.
12. Senoussi S. // J. Phys. III. 1992. V. 2 (7). P. 1041.
13. Assi H. et al. // Phys. Rev. E. 2015. V. 92 (5). P. 052124.
14. Sánchez-Zacate F.E., Conde-Gallardo A. // J. Supercond. Nov. Magn. 2021. V. 34 (12). P. 3141.
15. Lawrence W.E., Doniach S. // Proc. LT'12. 1971. P. 361.
16. Blatter G. et al. // Rev. Mod. Phys. 1994. V. 66 (4). P. 1125.
17. Schneider J.W., Schafroth S., Meier P.F. // Phys. Rev. B. 1995. V. 52 (5). P. 3790.
18. Bulaevskii L.N., Ledvij M., Kogan V.G. // Phys. Rev. B. 1992. V. 46 (1). P. 366.
19. Clem J.R. // Phys. Rev. B. 1991. V. 43 (10). P. 7837.
20. Reichhardt C., Reichhardt C.J.O. // Rep. Prog. Phys. 2016. V. 80 (2). P. 026501.
21. Rudnev I.A., Odintsov D.S., Kashurnikov V.A. // Phys. Lett. A. 2008. V. 372. P. 3934.
22. Kashurnikov V.A., Maksimova A.N., Rudnev I.A. // Phys. Solid State. 2014. V. 56 (5). P. 894.
23. Кашурников В.А., Красавин А.В. Вычислительные методы в квантовой физике: учебное пособие. 2005. Москва: НИЯУ МИФИ.
Review
For citations:
Mikhailov A.A., Maksimova A.N., Moroz A.N., Gokhfeld D.M. Temperature and Dimensional Dependence of the Irreversibility Field of a Layered High-Temperature Superconductor. Nuclear Physics and Engineering. 2023;14(4):339-344. (In Russ.) https://doi.org/10.56304/S2079562922050335