Preview

Nuclear Physics and Engineering

Advanced search

Temperature and Dimensional Dependence of the Irreversibility Field of a Layered High-Temperature Superconductor

https://doi.org/10.56304/S2079562922050335

Abstract

The Monte Carlo method was used in a 2D model of the layered HTS to calculate the magnetization curves of a granulated high-temperature superconductor for various sizes of granules. In this approach magnetization of granules alone is taken into account, while the contribution of the gaps between granules is small and neglected. The irreversibility field has been found to decrease with temperature at the fixed size of granules and increase as the granule size increases at fixed temperature. The time dependence of residual magnetization has been studied at various temperatures. The relaxation rate is shown not to depend on the granule size at low temperatures but to decrease with the increasing size (provided that the granule size is less than 3 μm) at a high temperature when the magnetic flux creep becomes of importance.

About the Authors

A. A. Mikhailov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. N. Maksimova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. N. Moroz
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



D. M. Gokhfeld
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Krasnoyarsk, 660036 



References

1. Bean C.P. // Phys. Rev. Lett. 1962. V. 8 (6). P. 250.

2. Matsushita T. et al. // Phys. C (Amsterdam, Neth.). 1993. V. 213 (34). P. 477.

3. Umezawa A. et al. // Nature (London, U.K.). 1993. V. 364 (6433). P. 129.

4. Ihara N., Matsushita T. // Phys. C (Amsterdam, Neth.). 1996. V. 257 (34). P. 223.

5. Matsushita T. et al. // Appl. Phys. Lett. 1990. V. 56 (20). P. 2039.

6. Garcıa Santiago A. et al. // Appl. Phys. Lett. 2000. V. 77 (18). P. 2900.

7. Hajilou R., Sedghi Gamchi H. // J. Low Temp. Phys. 2020. V. 198 (1). P. 7089.

8. Vlasenko V., Pervakov K., Gavrilkin S. // Supercond. Sci. Technol. 2020. V. 33 (8). P. 084009.

9. Sundar S. et al. // J. Appl. Phys. 2019. V. 125 (12). P. 123902.

10. Гохфельд Д.М. Магнитный гистерезис и плотность критического тока неоднородных сверхпроводников в сильных магнитных полях. Дис. д.ф.-м.н. 01.04.07. 2019. Красноярск.

11. Sánchez-Zacate F.E., Conde-Gallardo A. // Phys. C (Amsterdam, Neth.). 2019. V. 563. P. 1621.

12. Senoussi S. // J. Phys. III. 1992. V. 2 (7). P. 1041.

13. Assi H. et al. // Phys. Rev. E. 2015. V. 92 (5). P. 052124.

14. Sánchez-Zacate F.E., Conde-Gallardo A. // J. Supercond. Nov. Magn. 2021. V. 34 (12). P. 3141.

15. Lawrence W.E., Doniach S. // Proc. LT'12. 1971. P. 361.

16. Blatter G. et al. // Rev. Mod. Phys. 1994. V. 66 (4). P. 1125.

17. Schneider J.W., Schafroth S., Meier P.F. // Phys. Rev. B. 1995. V. 52 (5). P. 3790.

18. Bulaevskii L.N., Ledvij M., Kogan V.G. // Phys. Rev. B. 1992. V. 46 (1). P. 366.

19. Clem J.R. // Phys. Rev. B. 1991. V. 43 (10). P. 7837.

20. Reichhardt C., Reichhardt C.J.O. // Rep. Prog. Phys. 2016. V. 80 (2). P. 026501.

21. Rudnev I.A., Odintsov D.S., Kashurnikov V.A. // Phys. Lett. A. 2008. V. 372. P. 3934.

22. Kashurnikov V.A., Maksimova A.N., Rudnev I.A. // Phys. Solid State. 2014. V. 56 (5). P. 894.

23. Кашурников В.А., Красавин А.В. Вычислительные методы в квантовой физике: учебное пособие. 2005. Москва: НИЯУ МИФИ.


Review

For citations:


Mikhailov A.A., Maksimova A.N., Moroz A.N., Gokhfeld D.M. Temperature and Dimensional Dependence of the Irreversibility Field of a Layered High-Temperature Superconductor. Nuclear Physics and Engineering. 2023;14(4):339-344. (In Russ.) https://doi.org/10.56304/S2079562922050335

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)