Influence of Proton Irradiation on the Critical Parameters of HTS Composites
https://doi.org/10.56304/S2079562922050013
Abstract
High-temperature superconducting (HTS) 2G composite tapes are promising materials for the development of sources of high magnetic fields, including for accelerators and tokamaks, where superconductors can be exposed to radiation for a long time. Such an impact leads to the appearance of defects in superconductors, the presence of which can lead both to a decrease in the current-carrying capacity of the HTS due to the degradation of the superconducting layer, and to an increase due to the formation of additional pinning centers for magnetic field vortices. In this work, we simulated the processes of defect formation during irradiation with protons with energy E = 6–20 MeV of both a single tape and a stack of 10 HTS tapes. The results obtained were verified experimentally by irradiating a stack of 10 HTS tapes with protons with an energy of E = 6 MeV and a fluence of up to 5 × 1015 cm–2. For experimental studies, an industrial SuperOx HTS tape with a double-sided copper coating 20 μm thick was used. It is shown that for irradiation with protons with energy E = 6 MeV, the radiation practically does not pass through a single tape, which is confirmed by the fact that the critical current of the superconductor drops only in the first layer of a stack of HTS tapes, and the value of the critical temperature for this layer differs by less than by 0.5% compared to the non-irradiated tape. It is concluded that in real systems HTS tapes can be easily protected from radiation with an energy of E = 6 MeV, but as the energy increases, a more complex protection design is required.
About the Authors
D. A. AbinRussian Federation
Moscow, 115409
M. A. Osipov
Russian Federation
Moscow, 115409
A. S. Starikovskii
Russian Federation
Moscow, 115409
I. A. Rudnev
Russian Federation
Moscow, 115409
V. S. Stolbunov
Russian Federation
Moscow, 123182
T. V. Kulevoy
Russian Federation
Moscow, 123182
P. A. Fedin
Russian Federation
Moscow, 123182
References
1. Colucci S.L., Weinstock H., Suenaga M. // J. Appl. Phys. 1977. V. 48 (2). P. 837–838.
2. Fähnle M., Kronmüller H. // J. Nucl. Mater. 1978. V. 72 (1–2). P. 249–255.
3. Trappeniers L. et al. // Phys. C (Amsterdam, Neth.). 1999. V. 313 (1–2). P. 1–10.
4. Paulius L. et al. // Phys. Rev. B. 1997. V. 56 (2). P. 913–924.
5. Rudnev I. et al. // IEEE Trans. Appl. Supercond. 2022. V. 32 (4). P. 1–5.
6. Civale L. et al. // Phys. Rev. Lett. 1991. V. 67 (5). P. 648–651.
7. Kirk M.A., Yan Y. // Micron. 1999. V. 30 (5). P. 507–526.
8. Jia Y. et al. // Appl. Phys. Lett. 2013. V. 103 (12). P. 122601.
9. Haberkorn N. et al. // Supercond. Sci. Technol. 2015. V. 28 (12). P. 125007.
10. Choi W.J. et al. // Sci. Rep. 2020. V. 10 (1). P. 1–12.
11. Rudnev I.A., Odintsov D.S., Kashurnikov V.A. // Phys. Lett. A. 2008. V. 372 (21). P. 3934–3936.
12. Rudnev I.A., Odintsov D.S., Kashurnikov V.A. // Bull. Rus. Acad. Sci.: Phys. 2007. V. 71 (8). P. 1086–1088.
13. Елесин В.Ф., Руднев И.А. // Сверхпроводимость: физика, химия, техника. 1991. Т. 4 (11). С. 2055–2071.
14. Елесин В.Ф., Есин И.А., Руднев И.А. // Сверхпроводимость: физика, химия, техника. 1993. Т. 6 (4). С. 807–822.
Review
For citations:
Abin D.A., Osipov M.A., Starikovskii A.S., Rudnev I.A., Stolbunov V.S., Kulevoy T.V., Fedin P.A. Influence of Proton Irradiation on the Critical Parameters of HTS Composites. Nuclear Physics and Engineering. 2023;14(4):321-329. (In Russ.) https://doi.org/10.56304/S2079562922050013