Preview

Nuclear Physics and Engineering

Advanced search

A Comparison of Neutron Identification Methods in Inorganic ZnS-Based Scintillators

https://doi.org/10.56304/S2079562920060366

Abstract

The paper presents a comparison of three methods for identifying neutrons in scintillators based on ZnS with 6Li and 10B: charge integration method, pulse gradient analysis and simplified digital charge collection. A quality factor is used for comparison. It is calculated by the distribution of distances from the event coordinate to the discrimination curve. It is shown that charge integration method is observed to provide the best discrimination performance in this research.

About the Authors

P. S. Kuzmenkova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

P. S. Kuzmenkova,

Moscow, 115409.



D. M. Gromushkin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

D. M. Gromushkin,

Moscow, 115409.



T. D. Tretyakova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

T. D. Tretyakova,

Moscow, 115409.



I. A. Shulzhenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

I. A. Shulzhenko,

Moscow, 115409.



References

1. Ranucci G. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 354. P. 389.

2. Sabbah B. et al. // Nucl. Instrum. Methods Phys. Res. 1968. V. 58. P. 102.

3. Kuchnir F.T. et al. // IEEE Trans. Nucl. Sci. 1968. V. 15. P. 107.

4. Stenkin Yu.V. // JETP Lett. 2017. V. 124. No. 5. P. 718.

5. Pino F. et al. // J. Instrum. 2015. V. 10. T08005.

6. Gamage K.A.A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2011. V. 642. P. 78.

7. Flaska M. et al. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 577. P. 654.

8. Polack J.K. et al. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 795. P. 253.

9. Cester D. et al. // Nucl. Instrum. Methods Phys. Res. A. 2014. V. 748. P. 33.

10. D’Mellow B. et al. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 578. P. 191.

11. Shippen D.I. et al. // IEEE Trans. Nucl. Sci. 2010. V. 57. P. 2617.

12. Doucet E. et al. // Nucl. Instrum. Methods Phys. Res. A. 2020. V. 954. P. 161201.

13. Knoll G.F. Radiation Detection and Measurement (3rd ed.). 2000. New York: Wiley.

14. Winyard R.A. et al. // Nucl. Instrum. Methods Phys. Res. 1971. V. 95. P. 141.

15. Sperr P. et al. // Nucl. Instrum. Methods Phys. Res. 1974. V. 116. P. 55.

16. Wolski D. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 360. P. 584.

17. Cao Z. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1998. V. 416. P. 32.


Review

For citations:


Kuzmenkova P.S., Gromushkin D.M., Tretyakova T.D., Shulzhenko I.A. A Comparison of Neutron Identification Methods in Inorganic ZnS-Based Scintillators. Nuclear Physics and Engineering. 2021;12(1):36-41. (In Russ.) https://doi.org/10.56304/S2079562920060366

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)