Preview

Nuclear Physics and Engineering

Advanced search

Irradiation-Induced Creep and Re-Sintering of Large Grain Sized UO2 Fuel

https://doi.org/10.56304/S2079562922050591

Abstract

A study of irradiation-induced creep and re-sintering of large grain sized fuel of the VVER type was carried out using the developed procedures and experimental facilities under radiation with fission rates of 1.0 × 1013 and 1.2 × 1013 1/(cm3 s). Strain diagrams generated during creep studies within the strain range of 10−40 MPa were obtained at effective sample temperatures of 943, 1020, 1200 and 1301 K. It was demonstrated that strain is mainly determined by irradiation induced creep within the temperature range of up to 1123 K. This was confirmed by its linear dependency on stress. At higher temperatures, the effect of radiation-thermal creep grows, and its contribution to the total strain increases with the growth of stress. Creep rate values obtained at temperatures of 1200 and 1301 K are higher than those of uranium dioxide with standard grain size. Strain diagram produced during the studies of re-sintering of an 88.32 mm high fuel column was obtained at the effective specimen temperature of 960 K. In terms of height, re-sintering amounted to 0.070−0.095%. It was showed that, within the limits of the experimental error, irradiation-induced re-sintering makes a small contribution to the resulting strain of the fuel in comparison with creep.

About the Authors

E. N. Mikheev
JSC Bochvar High Technology Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123098



A. V. Fedotov
JSC Bochvar High Technology Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123098



N. M. Rysev
JSC Bochvar High Technology Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123098



V. V. Novikov
JSC Bochvar High Technology Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123098



O. A. Bakhteev
JSC Bochvar High Technology Research Institute of Inorganic Materials (VNIINM)
Russian Federation

Moscow, 123098



A. L. Izhutov
JSC State Scientific Centre, Research Institute of Nuclear Reactors (RIAR)
Russian Federation

Dimitrivgrad, Ulyanovsk oblast, 433510



A. V. Burukin
JSC State Scientific Centre, Research Institute of Nuclear Reactors (RIAR)
Russian Federation

Dimitrivgrad, Ulyanovsk oblast, 433510



S. V. Seredkin
JSC State Scientific Centre, Research Institute of Nuclear Reactors (RIAR)
Russian Federation

Dimitrivgrad, Ulyanovsk oblast, 433510



G. A. Ilyinykh
JSC State Scientific Centre, Research Institute of Nuclear Reactors (RIAR)
Russian Federation

Dimitrivgrad, Ulyanovsk oblast, 433510



References

1. Solomon A.A., Roubort J.L., Voglewede J.C. Fission Induced Creep of UO2 and Its Significance to Fuel Element Performance. 1971. Chicago: Argonne National Laboratory.

2. ASTM C776-17. Standard Specification for Sintered Uranium Dioxide Pellets for Light Water Reactors. 2017.

3. Mikheev E.N. et al. // Proc. Top Fuel 2015: Reactor Fuel Performance. 2015. P. 379.

4. Mikheev E.N. et al. // Proc. Top Fuel 2016: LWR Fuels with Enhanced Safety and Performance. 2016. P. 463.

5. Малыгин В.Б. и др. Патент РФ на полезную модель № 117701. Г21Д 1/00. Бюллетень “Изобретения. Полезные модели”. 2012. № 18. С. 202.

6. ГОСТ Р 50618-93. Национальный стандарт Российской Федерации. Сильфоны компенсаторные однослойные металлические. Типы, общие технические требования.

7. Малыгин В.Б., Ремезов В.Н., Силин А.А. // Труды “Испытания реакторных материалов”. 1988. Москва: Энергоатомиздат. С. 34−36.

8. ГОСТ Р 8.585-2001. Национальный стандарт Российской Федерации. Термопары. Номинальные статические характеристики преобразования.

9. LabView Professional Development System. National Instruments Ltd. 2013. https://www.ni.com/en/shop/labview/select-edition.html

10. Lynds L. et al. X-Ray and Density Study of Nonstoichiometry in Uranium Oxides. 1963. Washington: American Chemical Society.

11. Leinders G. et al. // J. Nucl. Mater. 2015. V. 459. P. 135.

12. SIAMS Photolab Version 4.0-b-r 3834: http://siams.com.

13. Regulatory Guide Office of NRC 1.126: An Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification. 2010. U.S.: Nuclear Regulatory Commission.

14. ANSYS 7.0 Documentation. Thermal Analysis Guide. 2009. Canonsburg: ANSYS Inc.

15. Иванов В.Б., Цыканов В.А., Булычева Л.В., Ванеев Ю.Е. и др. Труды по нейтронно-физическим характеристикам каналов облучения реактора СМ. Отчет инв. № О-4479. 1996. Димитровград: НИИАР.

16. Программа MCU-RR с библиотекой ядерных констант DLC/MCUDAT-2.1. Отчет инв. № 36/16-2000. 2000. Москва: НИЦ “Курчатовский институт”.

17. Perrin J. // J. Nucl. Mater. 1972. V. 42 (1). P. 101.

18. Stehle H., Assman H. // J. Nucl. Mater. 1974. V. 52 (2). P. 303.

19. Olander D. Fundamental Aspects of Nuclear Reactor Fuel Elements. TID-26711-P1. 1976. U.S.: Energy Research and Development Administration.

20. Малыгин В.Б. // Инженерная физика. 1999. Т. 1. С. 23.

21. Brucklacher D., Dienst W. // J. Nucl. Mater. 1972. V. 42. P. 285.

22. Sykes E.C., Sawbridge P.T. Irradiation Induced Creep of Uranium Dioxide: Tech. Report RD/B/N 1489. 1969. Berkeley: Central Electricity Generating Board.

23. Clough D.J. // J. Nucl. Mater. 1977. V. 65. P. 24.

24. Perrin J. // J. Nucl. Mater. 1971. V. 39. P. 175.

25. Малыгин В.Б. Механические свойства и размерная стабильность топлива энергетических ядерных реакторов. Дисс. д.т.н. 1997. Москва.

26. Соколов А.Н. Экспериментальное и расчетное обоснование использования оксидного топлива с низким сопротивлением деформированию в ТВЭлах энергетических реакторов. Дисс. к.т.н. 05.14.03. 2005. Москва.

27. Maier G., Assmann H., Dorr W. // J. Nucl. Mater. 1988. V. 153. P. 213.

28. Volkov B., Tverberg T. // Proc. 4th Int. Conf. on WWER Fuel Performance, Modelling and Experimental Support. 1–5 Oct., 2001. P. 186–196.

29. Volkov B.Yu. et al. // At. Energy. 2013. V. 114 (6). P. 325.


Review

For citations:


Mikheev E.N., Fedotov A.V., Rysev N.M., Novikov V.V., Bakhteev O.A., Izhutov A.L., Burukin A.V., Seredkin S.V., Ilyinykh G.A. Irradiation-Induced Creep and Re-Sintering of Large Grain Sized UO2 Fuel. Nuclear Physics and Engineering. 2023;14(5):419-433. (In Russ.) https://doi.org/10.56304/S2079562922050591

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)