Preview

Nuclear Physics and Engineering

Advanced search

Properties of a Simple е/γ Detector Consisting of a Lead Convertor and a Hodoscope

https://doi.org/10.1134/S2079562920010042

Abstract

The results of the calculations of coordinate resolution and hadron rejection factor for a simple е/γ detector consisting of a lead converter followed by a hodoscope are presented. For the simulation of showers, initiated in the converter by electrons and hadrons with energies upto 1 TeV GEANT4 is used. It is shown that the best coordinate resolution for electrons is achieved when the converter thickness is closed to the position tmax of the shower maximum. For example, at 200 GeV with 2 mm strip width hodoscope it is equal to σ = 89 μm provided a “truncated mean” coordinate estimation is used. The optimal thickness of the converter for hadron rejection is also close to tmax. For 200 GeV beam of electrons and protons the rejection factor of 10−4 for 0.9 electron detection efficiency can be reached using only data on charged particles multiplicities. Information on the spatial distribution of the shower particles after the converter allows to enhance further the rejection by several times.

About the Authors

V. N. Goryachev
Institute for High Energy Physics of the National Research Centre “Kurchatov Institute”
Russian Federation

 Protvino, Moscow oblast, 142281



S. P. Denisov
Institute for High Energy Physics of the National Research Centre “Kurchatov Institute”
Russian Federation

Protvino, Moscow oblast, 142281



A. V. Kozelov
Institute for High Energy Physics of the National Research Centre “Kurchatov Institute”
Russian Federation

Protvino, Moscow oblast, 142281



References

1. Tyapkin A.A. // Nucl. Instrum. Methods Phys. Res. 1970. V. 85. P. 277–278.

2. Muller D. // Phys. Rev. D: Part. Fields. 1972. V. 5. P. 2677.

3. Amatuni Ts.A., Denisov S.P., Krasnokutsky R.N. et al. // Nucl. Instrum. Methods Phys. Res. 1982. V. 203. P. 179–182.

4. Amatuni Ts.A., Antipov Yu.M., Denisov S.P. et al. // Nucl. Instrum. Methods Phys. Res. 1982. V. 203. P. 183–187.

5. Zhang C.S., Shibata M., Kasahara K., Yuda T. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1989. V. 283. P. 78–87.

6. del Peso J., Ros E. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1991. V. 306. P. 485.

7. Apollinari G., Giokaris N.D., Goulianos K. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1993. V. 324. P. 475–481.

8. Acosta D., Bylsma B., Durkin L.S. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 354. P. 296–308.

9. Alvsvaag S.J., Maeland O.A., Klovning A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 360. P. 219–223.

10. Byrum K., Dawson J., Nodulman L. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 364. P. 144–149.

11. Akimenko S.A., Belousov V.I., Chujko B.V. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 365. P. 92–97.

12. Grunhaus J., Kananov S., Milststene C. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1995. V. 354. P. 368–375.

13. Chang Y.H., Chen A.E., Hou S.R. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1997. V. 388. P. 135–143.

14. Kawagoe K., Sugimoto Y., Takeuchi A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. 487. P. 275–290.

15. Balanda A., Jaskula M., Kajetanowicz M. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2004. V. 531. P. 445–458.

16. Itoh S., Takeshita T., Fujii Y., Kajino F. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2008. V. 589. P. 370–382.

17. Ronzhin A., Los S., Ramberg E. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2015. V. 795. P. 288–292.

18. Denisov S.P., Goryachev V.N. // Phys. At. Nucl., 2018. V. 81. No. 10. P. 1488–1493.

19. Denisov S.P., Goryachev V.N. // arXiv:1812.07906 [physics.ins-det]. 2018.

20. Denisov S.P., Goryachev V.N. // arXiv:1812.10054 [physics.ins-det]. 2018.

21. http://cern.ch/geant4.

22. Lehmann E. // Theory of Point Estimation. 1983. New York: Wiley.

23. Akopdjanov G.A., Inyakin A.V., Kachanov V.A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1977. V. 140. P. 441–445.

24. Amatuni Ts.A., Antipov Yu.M., Denisov S.P., Petrukhin A.I. // Prib. Tekh. Eksp. 1983. V. 3. P. 33 (in Russian).

25. Gorin Yu.P., Denisov S.P., Donskov S.V. et al. // Sov. J. Nucl. Phys. 1973. V. 18. P. 336; Nucl. Phys B. 1973. V. 61. P. 62.


Review

For citations:


Goryachev V.N., Denisov S.P., Kozelov A.V. Properties of a Simple е/γ Detector Consisting of a Lead Convertor and a Hodoscope. Nuclear Physics and Engineering. 2020;11(1):50-60. (In Russ.) https://doi.org/10.1134/S2079562920010042

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)