Preview

Ядерная физика и инжиниринг

Расширенный поиск

HE как источник термоядерной энергии: малорадиоактивный синтез и большие возможности

https://doi.org/10.1134/S2079562919050178

Аннотация

Рассмотрен D–3 He (дейтерий–гелий-3) топливный цикл, который представляет компромиссный вариант для термоядерного синтеза – экологически чище, чем D–T (дейтерий–тритий), практически как безнейтронная p–11B (протон–бор-11) реакция. Интерес к таким малорадиоактивным топливам проявляют венчурные компании, финансируемые из частных источников. Приведен обзор параметров и типов удержания плазмы в подобных планируемых энергетических реакторах и установках. Обсуждаются вопросы добычи гелия-3, в работе также проведена оценка запасов изотопа гелия-3 на планете Земля. Рассмотрены разные возможные приложения малорадиоактивных и безнейтронных реакций и топливных циклов.

Об авторе

С. В. Рыжков
Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)
Россия

Москва, 105005



Список литературы

1. Kukulin V.I., Voronchev V.T. // Phys. At. Nucl. 2010. V. 73. P. 1376–1383

2. Кузенов В.В. // Ядерная физика и инжиниринг. 2016. Т. 7. С. 342–346 [Kuzenov V.V. // Phys. At. Nucl. 2017. V. 80. P. 1683–1686].

3. Курнаев В.А., Воробьев Г.М., Николаева В.Е. и др. // Ядерная физика и инжиниринг. 2019. Т. 10. С. 24– 27 [Kurnaev V.A., Vorobyov G.M., Nikolaeva V.E. et al // Phys. At. Nucl. 2019. V. 82. P. 1329–1331].

4. Khvesyuk V.I., Ryzhkov S.V., Santarius J.F. et al. // Fusion Technol. 2001. V. 39. No. 1. T. P. 410—413.

5. Кузенов В.В., Лебо А.И., Лебо И.Г., Рыжков С.В. Физико-математические модели и методы расчета воздействия мощных лазерных и плазменных импульсов на конденсированные и газовые среды. 2015. Москва: МГТУ им. Н.Э. Баумана.

6. Ryzhkov S.V. // Fusion Sci. Technol. 2007. V. 51. No. 2. T. P. 190–192.

7. Ryzhkov S.V. // Sustainable Cities Soc. 2015. V. 14. P. 313–315.

8. Ryzhkov S.V. // Fusion Sci. Technol. 2005. V. 47. No. 1T. P. 342–344.

9. Рыжков С.В., Чирков А.Ю. Системы альтернативной термоядерной энергетики. 2017. Москва: Физматлит.

10. https://tae.com.

11. https://www.helionenergy.com.

12. https://generalfusion.com

13. www.emc2fusion.org

14. https://lppfusion.com

15. Азизов Е.А., Ананьев С.С., Беляков В.А. и др. // ВАНТ. Сер. Термоядерный синтез. 2015. Т. 38. № 2. С. 5–18 [Azizov E.A., Ananyev S.S., Belyakov V.A. et al . // Phys. At. Nucl. 2016. V. 79. P. 1125–1136].

16. Chirkov A.Yu., Ryzhkov S.V., Bagryansky P.A., Anikeev A.V. // Fusion Sci. Technol. 2011. V. 59. No. 1T. P. 39–42

17. Ryzhkov S.V. // Fusion Sci. Technol. 2009. V. 55. No. 2T. P. 157–161.

18. Тимошилов В.П. // Нефтегазовая вертикаль. 2006. No. 7; Mastepanov A.M., Timoshilov V.P., Shelekhov D.Yu. // Int. Gas Union World Gas Conf. Papers. 2009. V. 6. P. 4465–4474.

19. Kulcinski G.L. et al. // Fusion Technol. 1992. V. 21. P. 2292–2315.

20. Bathke C.G. et al. // Fusion Eng. Design. 1997. V. 38. P. 59–74.

21. Schmitt H.H. Return to the Moon: Exploration, Enterprise and Energy in the Human Settlement of Space. 2005. Berlin: Springer.

22. Гасилов B.A., Захаров СВ., Смирнов В.П. // Письма в ЖЭТФ. 1991. Т. 53. No. 2. С. 83–86; Aleksandrov V.V., Branitski A.V., Gasilov V.A. // Plasma Phys. Control. Fusion 2019. V. 61. P. 035009.

23. Рыжков С.В. // Известия РАН. Сер. физ. 2014. Т. 78. No. 5. С. 647–653. [Ryzhkov S.V. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. P. 456–461].

24. Chirkov A.Yu., Ryzhkov S.V. // J. Fusion Energy. 2012. V. 31. P. 7–12.

25. Asle Zaeem A., Ghafoori Fard H., Sadighzadeh A., Habibi M. // Plasma Phys. Rep. 2018. V. 44. No. 3. P. 378–386.

26. Mozgovoy A.G., Romadanov I.V., Ryzhkov S.V. // Phys. Plasmas. 2014. V. 21. P. 022501.

27. Ryzhkov S.V., Chirkov A.Yu., Ivanov A.A. // Fusion Sci. Technol. 2013. V. 63. No. 1T. P. 135.

28. Ryzhkov S. V., Khvesyuk V. I., Ivanov A. A. // Fusion Sci. Technol. 2003. V. 43. No. 1T. P. 304.

29. Рыжков С.В. // Прикладная физика. 2010. No. 1. С. 47–54 [Ryzhkov S.V. // Plasma Phys. Rep. 2011. V. 37. P. 1075–1081].

30. Ковальчук М.В., Ильгисонис В.И., Кулыгин В.М. // Природа. 2017. No. 12 (1228). С. 33–44; Арсенин В.В., Жильцов В.А., Кулыгин В.М., Обрезков О.И., Переславцев А.В., Спицын А.В. // ВАНТ. Сер. Термоядерный синтез. 2018. Т. 41. № 2. С. 13–22.

31. Ryzhkov S.V., Kuzenov V.V. // Zeitschr. Angew. Math. Phys. 2019. V. 70. P. 46.

32. Рудинский А.В., Ягодников Д.А. // Теплофиз. выс. темп. 2019. Т. 57. С. 777–785 [Rudinskiy A.V., Yagodnikov D.A. // High Temp. 2019. V. 57. P. 753–760].

33. Belyaev V.S., Vinogradov V.I., Matafonov A.P. et al. // Phys. At. Nucl. 2009. V. 72. P. 1077–1098.


Рецензия

Для цитирования:


Рыжков С.В. HE как источник термоядерной энергии: малорадиоактивный синтез и большие возможности. Ядерная физика и инжиниринг. 2020;11(1):43-49. https://doi.org/10.1134/S2079562919050178

For citation:


Ryzhkov S.V. Helium-3 as a Perspective Fuel for Power Generation through Aneutronic Thermonuclear Fusion. Nuclear Physics and Engineering. 2020;11(1):43-49. (In Russ.) https://doi.org/10.1134/S2079562919050178

Просмотров: 25


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)