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В статье представлены результаты исследований сверхбыстрой фотоиндуцированной динамики коэф-
фициента отражения сверхпроводящих композитов на основе слоистых купратов семейства REBCO
(RE = Y) на подложке сплава Hastelloy C-276 в диапазоне температур 5–200 К. Показано, что сверх-
быстрые отклики коэффициента отражения на возбуждение фемтосекундными световыми импуль-
сами содержат компоненты, обусловленные нормальной и сверхпроводящей подсистемами. Вклад
от нормальной компоненты проявляет более быструю релаксацию, ~0.2 пс, его амплитуда пропор-
циональна плотности энергии накачки в широком диапазоне ее величин. Для отклика сверхпрово-
дящей компоненты, наблюдающейся ниже Tc = 92 K, наблюдается более длинная релаксация, ~2.5 пс,
а вариация амплитуды с плотностью энергии накачки проявляет излом при ~14 мкДж/см2. Ампли-
туда отклика сверхпроводящей компоненты изменяется с температурой в соответствии с предска-
заниями феноменологической модели Ротварфа и Тейлора. Тонкопленочные композиты на базе
YBa2Cu3O7–x по данным сверхбыстрой лазерной спектроскопии имеют свойства, очень близкие к
свойствам этих соединений в форме монокристаллов.
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1. ВВЕДЕНИЕ
Исследование неравновесных состояний кон-

денсированных сред являлось одной из первооче-
редных задач физики твердого тела с 1960-х годов.
После открытия высокотемпературной сверхпро-
водимости (ВТСП) в купратах и одновременном
быстром развитии методов сверхбыстрой лазер-
ной спектроскопии стало очевидно, что для на-
блюдения фотовозбужденных неравновесных со-
стояний требуются экспериментальные методы с
фемтосекундными временами разрешения [1]. Ис-
пользование для возбуждения фемтосекундных ла-
зерных импульсов позволяет достичь высокой ин-
тенсивности излучения при малой энергии им-
пульса, а малая (менее времени электрон-
фононной релаксации) длительность импульсов
дает уникальную возможность исследовать не-
равновесные состояния, возникающие в таких
экспериментах.

В самом деле, исследование в режиме реального
времени динамики квазичастиц в сверхпроводни-

ках на основе соединения REBCO (REBa2Cu3O7–x,
где RE – редкоземельный элемент, как правило,
гадолиний, либо иттрий) стало возможным с при-
менением методов накачки-зондирования (pump-
probe spectroscopy) с использованием фемтосе-
кундных лазеров [2–4]. В литературе существует
консенсус в том, что изменения отражательной
способности в таких оптических экспериментах
пропорциональны концентрации фотовозбужден-
ных квазичастиц [5, 6]. Это позволяет отслеживать
эволюцию системы при возмущении сверхпрово-
дящего состояния путем измерения динамики от-
ражательной способности сверхпроводника [7].

Исходно динамика коэффициента отражения
купратных сверхпроводников, в которой выде-
лялся отклик сверхпроводящего состояния, иссле-
довалась в видимом диапазоне спектра 1.5–3.0 эВ
[8]; впоследствии подобные исследования были
выполнены и в ближней инфракрасной области
0.5–1.0 эВ [9, 10]. Первая феноменологическая мо-
дель рекомбинации квазичастиц по механизму фо-

УДК 538.955

ВЗАИМОДЕЙСТВИЕ ПЛАЗМЫ, ПУЧКОВ ЧАСТИЦ
И ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ



ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ  том 16  № 6  2025

ИССЛЕДОВАНИЕ НЕРАВНОВЕСНЫХ ФОТОВОЗБУЖДЕННЫХ СОСТОЯНИЙ 923

нон-опосредованного спаривания была предложе-
на Ротварфом и Тейлором [11]. Последние достиже-
ния в области феноменологического
моделирования и новые систематические экспе-
риментальные исследования неравновесного оп-
тического отклика [12, 13] значительно улучшили
понимание динамики фотовозбужденных квазича-
стиц на коротких временных масштабах. Исследо-
вания на монокристаллах La2–xSrxCuO4 [6] пока-
зали, что энергия испарения сверхпроводящего
конденсата Uv может быть оценена с хорошей
точностью. Однако, эти и другие измерения на
купратных сверхпроводниках [14] приводят к
значениям Uv, существенно превышающим экс-
периментальные энергии конденсации Uc и зна-
чения, полученные из теории БКШ [15]. Таким
образом, несмотря на широко представленный в
литературных источниках набор сведений об отра-
жательной и пропускательной способности ВТСП-
систем на субпикосекундных временных шкалах,
остаются открытыми вопросы разницы между
энергиями испарения и конденсации, и временами
релаксации как электронной подсистемы, так и
электрон-фононной релаксации. Механизмы оп-
тического отклика на возмущение сверхпроводя-
щей фазы, а также температурное поведение от-
ражательной способности выше Тс обсуждались с
различных точек зрения, и до сих пор эти вопро-
сы остаются дискуссионными.

В настоящее время фотоиндуцированные фа-
зовые переходы на субпикосекундных временах в
ВТСП и других электронно-упорядоченных си-
стемах привлекают всё большее внимание как с
точки зрения фундаментальной физики, так и с
позиции огромного числа потенциальных прило-
жений (электронные оптические переключатели,
сверхбыстрая память), однако изменения состоя-
ний в ВТСП и, в частности, в сверхпроводящих
композитах, на основе которых изготавливаются
тононесущие шины, переключатели и токоогра-
ничители, на ультракоротких временных шкалах
до сих пор не исследованы детально.

В настоящей работе представлены результаты
экспериментальных исследований динамики воз-
никновения и релаксации фотовозбужденных не-
стационарных состояний в открытой ВТСП пленке
YBa2Cu3O7–x при воздействии лазерных импуль-
сов фемтосекундной длительности. Методом на-
качки-зондирования в широком интервале тем-
ператур (4–300 К) проведены измерения динами-
ки отражательной способности образцов при
различных плотностях энергии (14–143 мкДж/см2)
возбуждения импульсами с длительностью 50 фс.
Представлено сравнение результатов экспери-

ментальных исследований с расчетными данны-
ми, полученными в рамках теоретической модели
Ротварфа и Тейлора

2. ОБРАЗЦЫ И ТЕХНИКА ЭКСПЕРИМЕНТА
Объектами исследований служили открытые

с-ориентированные пленки YBa2Cu3O7–x (далее
YBCO) на подложке сплава Hastelloy C-276, про-
изведенные методом лазерного напыления на ли-
нии компании СуперОкс. Использованная техно-
логия обеспечивает требуемое текстурирование за
счет формирования последовательности непрово-
дящих оксидных соединений Al2O3 и LaMnO3. Тол-
щина слоя YBCO в композите составляет ~1 мкм,
его шероховатость порядка 100 нм. Для подготов-
ки образцов к исследованиям фотоиндуцирован-
ной динамики коэффициента отражения пленки
полировались на алмазной пасте градации 2/1 мкм
на гладкой бумаге. Глубина проникновения ла-
зерного излучения (10−20 нм) не превышает тол-
щину ВТСП пленки, поэтому можно утверждать,
что вклад в оптический отклик вносит только ма-
териал сверхпроводящего слоя. Критическая тем-
пература Tc перехода в сверхпроводящее состоя-
ние определялась экспериментально по данным
транспортных измерений и составила 92 К. Изме-
нение отражательной способности пленки исследо-
валось в диапазоне температур 5–200 К. Для этого
образец приклеивался к холодному пальцу проточ-
ного гелиевого криостата Janis ST-500 в комплекте с
контроллером температуры Lakeshore 335.

Исследование сверхбыстрой динамики отра-
жательной способности открытой ВТСП пленки
на подложке сплава Hastelloy C-276 осуществлялось
с использованием фемтосекундного Ti:Sapphire ла-
зерного комплекса, включавшего генератор фемто-
секундных импульсов Micra-5 и регенеративный
усилитель Legend Elite USP (Coherent, США), обес-
печивавшие генерацию импульсов длительностью
35 фс с центральной длиной волны 800 нм (1.55 эВ),
энергией в импульсе до 1.5 мДж и частотой следо-
вания импульсов до 1 кГц. Длительность импуль-
сов измерялась автокоррелятором марки SSA-F
(также компании Coherent, США). Зондирование
осуществлялось на длине волны 800 нм при дли-
тельности импульса 35 фс, накачка – светом вто-
рой гармоники с длиной волны 400 нм и длительно-
стью импульса ~40 фс. Длина волны зондирования
800 нм была выбрана ввиду наличия большого на-
бора опубликованных данных по исследованиям
откликов сверхпроводящего и псевдощелевого со-
стояний в YBCO именно для этой длины волны.
Размер пятна накачки на образце (600 мкм) зна-
чительно превосходил размер пятна зондирова-
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ния (50 мкм). То же касается и плотности энер-
гии: так, диапазон для накачки лежал в пределах
14–140 мкДж/см2, а для зондирования был равен
0.1 мкДж/см2. Чувствительность установки обес-
печивалась использованием дифференциальной
методики с модуляцией света накачки с блокиро-
ванием каждого второго импульса и синхронного
детектирования.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведена температурная эволюция
фотоиндуцированной динамики нормированно-
го на равновесную величину коэффициента отра-
жения ΔR/R(Δt) открытого слоя YBCO исследуе-
мого композита. При нулевой задержке коэффи-
циент отражения резко возрастает на ~0.2–0.3%,
затем релаксирует к некоторому ненулевому зна-
чению, что говорит о наличии относительно дол-
гоживущей компоненты. Из рис. 1 видно, что на-
блюдаемая динамика меняется мало в пределах
каждого из диапазонов Т > Tc и Т < Tc. Однако при
переходе через Tc характер отклика заметно меня-
ется: возрастает скачком амплитуда отклика в
максимуме и сильно проявляется вклад в отклик
с более длинной релаксацией. Релаксация коэф-
фициента отражения во всем диапазоне темпера-
тур может хорошо быть описана суммой двух спа-
дающих экспоненциальных вкладов – быстрого с
характерным временем ~0.2 пс и более длинного
~2.5 пс. Первый вклад доминирует в откликах,
наблюдающихся при T > Tc, второй приобретает
значимый вес при T < Tc.

На рис. 2 показана температурная зависимость
добавочной относительно наблюдаемой при T =
= 120 K амплитуды отклика ΔRsc/R в максимуме,
нормированной на ее значение при T = 20 K. Дан-
ные представлены для двух величин плотности
энергии накачки – 14 и 43 мкДж/см2. При охла-
ждении образца ниже Tc наблюдается быстрый
рост ΔRsc/R с выходом на постоянную величину
при низких температурах. Критический характер
зависимости этого вклада и его стремление к ну-
левому значению при T > Tc позволяют однознач-
но связать вклад ΔRsc/R(Δt) с установлением в
слое YBCO сверхпроводящего состояния.

Замедление скорости релаксации коэффици-
ента отражения, обусловленной динамикой элек-
тронной подсистемы образца, отмечалось в литера-
туре ранее [16] и связывалось с электрон-фононной
релаксацией возбужденных сверхкоротким свето-
вым импульсом квазичастиц через сверхпроводя-
щую щель (и восстановлением равновесного сверх-
проводящего состояния, соответственно) и реали-
зацией условий боттлнека вследствие “перегрева”
высокочастотной составляющей фононного ре-
зервуара из-за более высокой вероятности безыз-
лучательной релаксации при задействовании в
процессе меньшего числа фононов (при их боль-
шей частоте и заданной ширине щели).

На рис. 3 приведены результаты измерений
фотоиндуцированной динамики коэффициента
отражения ΔR/R(Δt) для трех различных значений
плотности энергии импульса накачки Ф и двух

Рис. 1. Температурная зависимость индуцированной
фемтосекундным импульсом накачки динамики ко-
эффициента отражения слоя YBCO с Tc = 92 K сверх-
проводящего композита на подложке сплава Hastelloy
C-276; измерения выполнены при плотности накачки
14 мкДж/см2 на длине волны 400 нм.
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температур – выше Tc, T = 120 К, и намного ниже
Tc, T = 5 K.

Отметим следующие особенности наблюдае-
мой динамики коэффициента отражения. Пер-
вое, для всех значений плотности энергии накач-
ки амплитуда сверхбыстрого оптического откли-
ка при 120 К всегда меньше, чем амплитуда в
сверхпроводящем состоянии. Второе, с увеличе-
нием плотности энергии накачки амплитуда от-
клика как в нормальном, так и в сверхпроводя-
щем состояниях растет, однако, амплитуды вкла-
дов демонстрируют разные зависимости. Так,
если для нормального состояния зависимость в
пределах погрешности линейная, то для сверх-
проводящего она проявляет излом, приходящий-
ся приблизительно на величину плотности накач-
ки, близкую к наименьшей задействованной на-
ми в экспериментах (вставка рис. 3, см. текст
далее); амплитуда вклада в отклик от сверхпрово-
дящей составляющей определялась как разница
между амплитудами при T < Tc и T > Tc. И, третье,
величина отклонения коэффициента отражения
от равновесного после фотовозбуждения релак-
сирует за ~20 пс для всех энергий и температур до
определенного ненулевого значения, оставаясь

на том же уровне до ~2 нс. Последнее связано с
квазиравновесным охлаждением зондируемого
объема образца как целого (термализованных
электронной и решеточной подсистем), харак-
терным временным масштабом для которого яв-
ляются 102–103 пс.

Линейный характер зависимости амплитуды
динамики коэффициента отражения слоя YBCO
в нормальном состоянии от плотности энергии
накачки неудивителен: система была исходно и,
по сути, остается металлической независимо от
уровня возбуждения. При этом электронная под-
система на коротких временах (после достижения
квазиравновесия внутри себя) может характери-
зоваться температурой в сотни и тысячи кельвин.
Очевидно, что при температуре ниже Tc следует
ожидать иного характера зависимости. Важным
нюансом здесь выступает существенная неодно-
родность уровня возбуждения по глубине, харак-
теризующаяся в первом приближении экспонен-
циальным уменьшением на масштабе оптической
глубины проникновения (последняя оценивалась
для оптимально-допированного дырками YBCO
в ~70 нм [17]). Как следствие, повышение элек-
тронной температуры выше Tc при увеличении

Рис. 3. Изменение отражательной способности пленки YBCO при Т > Tc и T < Tc для различных величин плотности
энергии импульсов накачки. На вставке показаны вклады в результирующую амплитуду отклика в максимуме ΔR/R(Δt)
от нормальной (квадраты) и сверхпроводящей (круги) составляющих (см. текст).
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уровня накачки и, соответственно, разрушение
сверхпроводящего состояния постепенно запол-
няет зондируемый объем материала. Поэтому ин-
дикатором разрушения сверхпроводящего состо-
яния на поверхности, согласно источникам [17],
является отклонение хода амплитуды отклика
сверхпроводящей компоненты от исходной ли-
нейной зависимости. Разрушение сверхпроводи-
мости во всем зондируемом объеме в зависимости
от ВТСП-материала проявляется либо в выходе от-
клика на постоянную величину (например, для
La2–xSrxCuO4) либо на линейную зависимость с
иным, нежели на начальном участке, наклоном
(серия YBa2Cu3O7–d)  [17]. Последний случай, оче-
видно, хорошо соответствует представленным на
вставке в рис. 3 данным. Микроскопически, про-
цесс разрушения и восстановления сверхпрово-
дящего состояния связывается с диссоциацией и
безызлучательной рекомбинацией куперовских
пар на малых временах в несколько пикосекунд
[12, 13, 18].

Как уже было сказано ранее, в литературе су-
ществует консенсус в отношении того, что неста-
ционарные изменения отражательной способности
в оптических экспериментах накачки-зондирова-
ния пропорциональны количеству фотовозбуж-
денных квазичастиц [19, 20]. При сравнительно
низких энергиях воздействия (14 и 43 мкДж/см2)
меньшее число куперовских пар было разрушено
излучением, поэтому пик оптического отклика
ниже. С ростом температуры количество купе-
ровских пар в материале уменьшается, следова-
тельно, и количество фотовозбужденных квази-
частиц будет меньше, как и пик отражательной
способности. В случае более высоких энергий
воздействия (131 мкДж/см2) уже при низких тем-
пературах разрушаются все куперовские пары.
Пик отражательной способности обусловлен уже
в большей степени не куперовскими парами, а
электронами, возбуждаемыми из занятых состоя-
ний в незанятые. С этим связывается продолже-
ние нарастания амплитуды отклика с увеличени-
ем уровня накачки при заданной температуре в
области высоких плотностей энергии импульсов
возбуждения.

Полученные результаты согласуются с пред-
ставленными в литературных источниках иссле-
дованиями для высокотемпературных YBa2Cu3O7–x
и La2–xSrxCuO4 [6, 17] и хорошо описываются фе-
номенологической моделью рекомбинации ква-
зичастиц Ротварфа и Тейлора [11]. Поскольку при
энергиях 14 мкДж/см2 и 43 мкДж/см2 наблюдает-
ся частичное разрушение сверхпроводимости, то,
используя уравнение Маттиса−Бардина [21] и вы-

ражения, полученные в работах [6, 22], при T < Tc
можно провести оценку температурной зависи-
мости амплитуды отклика сверхпроводящей ком-
поненты ΔRsc/R сигнала , как

(1)

где  – энергия фотона, ∆(Т) – температурная
зависимость сверхпроводящей энергетической

щели. Использование соотношения  = 6, по-

лученного для YBCO в работе [23], приводит к хо-
рошему согласию предсказываемой температур-
ной зависимости чистого сверхпроводящего опти-
ческого отклика и экспериментальных результатов
для энергий накачки 14 мкДж/см2 и 43 мкДж/см2

(рис. 2).
Отметим, что исследования купратных сверх-

проводников в форме монокристаллов методами
фемтосекундной лазерной спектроскопии вы-
полнялись несколькими научными группами  [17,
24]. Исследования тонких пленок купратов также
встречаются [25, 26], но больше на уровне наблю-
дения явления, чем изучения его характеристик.
Особенностью представленной работы является
выбор в качестве объекта интереса композитного
материала, представленного относительно тол-
стым (1 мкм) слоем текстурированного YBCO на
подложке сплава Hastelloy C-276 осажденного на
последовательность вспомогательных буферных
слоев. Качество структуры и морфологии такого
объекта в силу наличия интерфейсов, а также
двойникования и текстуры в плоскости заведомо
ниже, чем у монокристаллов. В то же время, мож-
но констатировать, что наблюдаемые свойства в
части сверхбыстрых электронных откликов ис-
следованного нами образца, по сути, воспроизводят
свойства монокристаллов. Установление сверхпро-
водящего состояния проявляется в виде значи-
тельного (до 100% по амплитуде) возрастания ам-
плитуды импульсного отклика коэффициента от-
ражения по сравнению с нормальным состоянием.
Такое наблюдение может послужить основой для
экспресс-анализа качества формируемых сверх-
проводящих композитов в части однородности их
свойств по площади слоя и его толщине. Иден-
тичность сверхбыстрого оптического отклика на-
блюдаемым на монокристаллах свидетельствует о
высоком качестве осажденного слоя YBCO в об-
разце.

4. ЗАКЛЮЧЕНИЕ
Таким образом, в работе представлены резуль-

таты исследования методом фемтосекундной ла-
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зерной спектроскопии динамики отражательной
способности сверхпроводящего композита на базе
текстурированного слоя YBa2Cu3O7–d на подложке
сплава Hastelloy C-276. Для диапазона плотностей
энергии импульсов накачки 14–131 мкДж/см2 про-
демонстрировано существенное изменение сверх-
быстрой релаксации коэффициента отражения при
установлении сверхпроводимости в материале.
Показано, что наблюдаемый отклик имеет два
вклада – нормальной и сверхпроводящей элек-
тронных компонент, первая из которых демон-
стрирует линейную зависимость амплитуды от
плотности энергии возбуждения, а вторая прояв-
ляет излом при ≤14 мкДж/см2. Отклик сверхпро-
водящей компоненты носит пороговый характер;
накачка с энергией выше пороговой приводит к
нетепловому разрушению сверхпроводящего со-
стояния. Температурная зависимость амплитуды
отклика сверхпроводящей компоненты хорошо
описывается в рамках феноменологической тео-
рии Ротварфа и Тейлора. Хорошее соответствие ре-
зультатов, полученных на исследованном сверх-
проводящем композите и описанных в литературе
для монокристаллических образцов свидетель-
ствует о высоком качестве сформированного слоя
YBa2Cu3O7–d в исследованном образце.
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Study of Nonequilibrium Photoexcited States 
in HTSC Composites Using Ultrafast Laser Spectroscopy

I. V. Martirosyan1, *, S. V. Pokrovskii1, A. V. Petrov2, and R. V. Yusupov2

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
2Kazan Federal University, Kazan, 420008 Russia

*e-mail: mephizic@gmail.com
Received December 27, 2024; revised January 15, 2025; accepted January 22, 2025

Abstract—The superfast photoinduced dynamics of the reflection coefficient of superconducting composites
based on layered REBCO (RE = Y) cuprates on a Hastelloy C-276 substrate has been studied in the tempera-
ture range of 5–200 K. It has been shown the ultrafast responses of the reflection coefficient to the excitation
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by femtosecond light pulses contain components caused by the normal and superconducting subsystems. The
contribution from the normal component has a shorter relaxation time of ~0.2 ps, and its amplitude is pro-
portional to the pump energy density in a wide range. The response of the superconducting component ob-
served below Tc = 92 K has a longer relaxation time of ~2.5 ps, and the dependence of the amplitude on the
pump energy density has a bend at ~14 μJ/cm2. The temperature dependence of the response amplitude of
the superconducting component corresponds to predictions of the phenomenological Rothwarf–Taylor
model. According to the ultrafast laser spectroscopy data, the properties of thin-film YBa2Cu3O7–x-based
composites are very close to the properties of single crystals of these compounds.

Keywords: HTSC composites, pump–probe spectroscopy, reflectivity, nonequilibrium states
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