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Экспериментально изучено воздействие высокодозного облучения на морфологию и структуру высоко-
ориентированного пиролитического графита УПВ-1Т ионами углерода с энергией 30 кэВ и гелия с энер-
гиями 10 и 30 кэВ в интервале температур от 50 до 600°С с флюенсом (1.0 – 4.5) ⋅ 1018 ион/см2. Показано,
что имплантация ионов гелия приводит как к эффектам динамического отжига радиационных наруше-
ний кристаллической структуры графита, так и к эффектам внедрения гелия при имитации взаимодей-
ствия продуктов термоядерного синтеза с графитовыми материалами.
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ВВЕДЕНИЕ
Обращенные к плазме материалы в термоядер-

ных установках (ТЯУ) подвергаются воздействию
больших потоков атомов D, T и He, порядка
1019 ат. с–1 ⋅ см–2 с энергиями от десятков электрон-
вольт до 2.5 МэВ. Полный поток нейтронов в ТЯУ
может составлять 1018 н. с–1 ⋅ см–2 при энергиях, до-
стигающих 14.1 МэВ. [1]. Воздействие потоков ге-
лия на материалы стенок ТЯУ в настоящее время
проходит обширную оценку. Считается, что зна-
чительные изменения поверхности металлов явля-
ются результатом захвата гелия вблизи поверхности
в местах внутренних или внешних дефектов [2]. За-
хваченные атомы гелия образуют кластеры, что
приводит к постепенному увеличению искажений
решетки, которые релаксируют путем схлопыва-
ния дислокационных петель, создавая заполнен-
ные гелием пузырьки увеличивающегося разме-
ра. Эти пузырьки могут лопнуть, вызывая поверх-
ностную пористость, и при дальнейшем
облучении эрозия приводит к формированию
наноструктурной поверхности. Влияние повре-
ждения объемного материала из-за нейтронов с
энергией 14.1 МэВ, также образующихся в реакциях
D–T термоядерного синтеза, на эти взаимодей-

ствия гелия с образцами материалов ТЯУ вблизи
поверхности еще предстоит оценить [3].

Основные эффекты при нейтронном облуче-
нии – это появление радиоактивности и измене-
ния в составе и структуре материала, которые
происходят в результате ядерных реакций и радиа-
ционного повреждения решетки кристалла. Глав-
ным фактором, вызывающим радиационные по-
вреждения в материалах при взаимодействии с ней-
тронами, является передача кинетической энергии
атомам. Энергии первично выбитых атомов име-
ют широкий диапазон до 100 кэВ [2].

Исследования по имитации нейтронного об-
лучения в реакторах методом облучения ионами,
позволяющими эффективно генерировать высо-
кие уровни радиационных повреждений, прово-
дятся путем облучения ионами различных типов
[4, 5]. Наиболее часто используют так называемое
самооблучение (self-irradiation) ионами атомов об-
лучаемого материала. Для сопоставления данных
ионного и нейтронного облучения используют
универсальную дозовую характеристику радиа-
ционных повреждений в числе смещений на атом,
СНА, которое для современных реакторов может
достигать сотен единиц.
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В настоящей работе для оценки влияния ради-
ационных повреждений на углеродные материа-
лы, вызываемых быстрыми ядрами гелия и ней-
тронами, проводили сравнение результатов мо-
дификации поверхности ВОПГ пучками ионов
Не+ и С+ при сопоставимых уровнях радиацион-
ных смещений в числе СНА.

ЭКСПЕРИМЕНТ И МЕТОДЫ 
ИССЛЕДОВАНИЯ

В эксперименте образцы ВОПГ марки УПВ-1Т
облучали ионами С+ и Не+ на масс-монохроматоре
НИИЯФ МГУ [6] с энергией 30 кэВ с одним и тем
же флюенсом Ф = 1 ⋅ 1018 ион/см2. Плотность тока
ионов С+ и Не+ составляла 0.2 и 0.3 мА/см2, соот-
ветственно. Дополнительно были проведены об-
лучения ионами Не+ с энергиями 10 и 30 кэВ и
флюенсами, приводящими к сопоставимым с об-
лучением ионами С+ профилям и величинам ра-
диационных смещений порядка 102 СНА на глу-
бине пробега частиц (70 и 130 СНА), рис. 1. Про-
фили СНА для подобранных случаев облучения
были рассчитаны по методике [7] c использова-
нием моделирования облучения с помощью про-
граммы SRIM [8]. Из результатов моделирования
видно, что максимумы радиационных наруше-
ний для ионов С+ и Не+ с энергией 30 кэВ состав-
ляют ~100 и 250 нм, соответственно.

Температуру образцов Т при облучении варьи-
ровали от 50 до 600°С, учитывая сильные зависи-
мости от Т структурных и размерных изменений
графитов как при нейтронном, так и ионном об-
лучении [9, 10]. Контроль температуры осуществ-
лялся при помощи хромель-алюмелевой термо-

пары, расположенной на обращенной к пучку
ионов поверхности образца и прикрепленной
держателем мишени так, чтобы термопара не по-
падала в область падения пучка. Анализ морфоло-
гии и структуры образцов проводили при помощи
растровой электронной микроскопии (РЭМ) и
спектроскопии комбинационного рассеяния све-
та (КРС) на длине волны 473 нм.

РЕЗУЛЬТАТЫ

РЭМ-изображения поверхности образцов ВОПГ
после облучения ионами Не+ и С+ с энергией 30 кэВ
и флюенсом 1 ⋅ 1018 ион/см2 при температурах Т =
= 50, 400 и 600°С приведены на рис. 2. Видно, что
в большинстве случаев ионное облучение приво-
дит к зависящей от сорта ионов и температуры
мишени фрагментации поверхности ВОПГ. Так,
облучение при Т = 50°С приводит к образованию
сетки субмиллиметровых тонких отслоений по-
верхности ВОПГ для ионов С+ и Не+. Для ионов
Не+ размеры чешуйчатых отслоений больше как
по площади, так и по толщине, см. рис. 2а, 2б.

Сравнение результатов облучения ВОПГ при
повышенных температурах показывает кардиналь-
ные различия в изменениях исходно зеркальной
поверхности ВОПГ для ионов Не+ и С+ (рис. 2в–
2е). При облучении ионами C+ при Т = 400°С
(рис. 2г) поверхность покрывается узором из не-
глубоких кратеров диаметром 3–5 мкм с субмик-
ронными вискероподобными стенками. Эта мор-
фология характерна для интервала температур
облучения от 150 до 500°С. Облучение ионами
Не+ при этих же температурах приводит к макро-
скопической фрагментации поверхности в виде

Рис. 1. Профили числа смещений на атом (СНА) для выбранных условий ионного облучения графита.
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чешуек, которые отслаиваются от поверхности и
изгибаются вплоть до скручивания. Толщина чешу-
ек при облучении ионами Не+ с энергией 30 кэВ
при температуре Т = 400°С составляет ~500 нм,
рис. 2в.

Облучение ионами С+ при 600°С (рис. 2е) при-
водит, в отличии от облучения в интервале темпе-
ратур 150–500°С, к многочисленным отслоениям
в виде чешуек. Отслоения представляют собой
тонкие пленки толщиной ~100 нм, что сопоста-
вимо с пробегом ионов углерода в графите. Облу-

чение ионами Не+ при Т = 600°С приводит наряду
с чешуйчатой фрагментацией поверхности при
меньших температурах к тысячекратному рассло-
ению чешуек (рис. 2д) в виде типичных форм ча-
стиц вспененного терморасширенного графита
(ТРГ) [11].

Профили СНА при флюенсе 1 ⋅ 1018 ион/см2

для ионов С+ и Не+ с энергией 30 кэВ различают-
ся по глубине и максимальному значению СНА,
рис. 1. С целью сопоставления облучений ионами
С+ и Не+ дополнительно были проведены облуче-

Рис. 2. РЭМ-изображения поверхности образцов ВОПГ после облучения ионами Не+ (а, в, д) и С+ (б, г, е) с энергией
30 кэВ и Ф = 1 ⋅ 1018 ион/см2 при температурах 50°С (а, б), 400°С (в, г) и 600°С (д, е).

100 мкм

(а)

100 мкм

(б)

100 мкм 100 мкм

(в)

100 мкм

(д)

100 мкм

(е)

(г)



910

ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ  том 16  № 6  2025

АНДРИАНОВА и др.

ния ионами Не+ при двух условиях, когда макси-
мальные значения СНА для С+ и Не+ близки друг
к другу при одной энергии ионов (30 кэВ Не+ с
флюенсом 3 ⋅ 1018 ион/см2), и когда профили СНА
близки как по максимальному значению, так и по
форме (10 кэВ Не+ с флюенсом 4.5 ⋅ 1018 ион/см2).
Сравнение и анализ полученных данных показал,
что качественные различия ионно-индуцирован-
ной морфологии после облучения ионами С+ и
He+ остаются такими же, что описаны выше после
облучения этими ионами при одной и той же энер-
гии и одним и тем же флюенсом. Облучение ВОПГ
ионами Не+ с энергией 10 кэВ до 4.5 ⋅ 1018 ион/см2

при температуре 250°С дополнительно фрагмен-
тирует поверхность с образованием овальных кра-
теров с расслоенными концентрическими стенка-
ми на не отслоившихся участках поверхности и
расслоенных стенках чешуек, рис. 3а. Такая же
структура наблюдалась и при облучении ионами
Не+ с энергией 30 кэВ и флюенсом 3 ⋅ 1018 ион/см2

при трехкратном различии пробегов Не+ и С+, см.
также [12]. Поперечный размер слоистых крате-
ров составляет десятки мкм с десятками слоев в
стенках, рис. 3а. Кроме того, увеличение флюенса
ионов Не+ при 600°С увеличивает размеры обла-
стей вспененного графита, ср. рис. 3б и рис. 2д.

На субмикронном уровне сходство облучения
ВОПГ ионами С+ и Не+ состоит в образовании
микроскладок на поверхности, рис. 4, образую-
щих сетчатую прожилковую структуру и связыва-
емую с ионно-индуцированными механически-
ми напряжениями [12, 13]. При облучении гелием
картина дополняется блистерами, рис. 4а. Сетки
микроскладок поверхности при этом наблюдают-
ся как около блистеров, так и на куполах блисте-
ров. Как блистеры, так и сетки микроскладок на-
блюдаются, в основном, на отслоенных участках
субмиллиметровых чешуек.

Значительное влияние температуры облучае-
мых образцов на их кристаллическую структуру
показывает спектроскопия комбинационного рас-

Рис. 3. РЭМ изображения поверхности образцов ВОПГ после облучения ионами He+ с энергией 10 кэВ с Ф = 4.5 ⋅ 1018 ион/см2

при Т = 250°С (а) и 30 кэВ с Ф = 3 ⋅ 1018 ион/см2 при Т = 600°С (б).
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Рис. 4. РЭМ изображения отслоившихся чешуек на поверхности образцов ВОПГ после облучения ионами Не+ (а) и
С+ (б) с энергией 30 кэВ при Т = 600°С. Ф = 1 ⋅ 1018 ион/см2.
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сеяния света (КРС). На рис. 5 приведены спектры
КРС до и после облучения ВОПГ ионами С+ и Не+

с энергий 30 кэВ и Ф = 1 ⋅ 1018 ион/см2 в интервале
температур от 50 до 600°С. Спектры КРС содержат
два основных пика первого порядка: пик G (графи-
товый пик) при сдвиге частоты Δk ~ 1580 см–1 и
пик D, обусловленный несовершенством кри-
сталлической структуры, при Δk ~ 1350 см–1, а
также соответствующие им пики второго поряд-
ка: 2D пик (обертон D пика) и др. [14, 15]. Амор-
физация поверхностного слоя при температурах
близких к комнатной приводит в спектрах КРС к
широкому куполу вместо разделенных G и D пи-
ков. С увеличением температуры облучения про-
исходит динамический отжиг радиационных на-
рушений с разделенными, но уширенными G и D
пиками. Такая трансформация спектров КРС при
ионном облучении является характерной для гра-
фитов и связывается со значительной концентра-
цией радиационных дефектов в облученном слое
[16–18], при этом сам слой остается графитопо-
добным. В целом, КРС показывает схожий уровень
структурной дефектности поверхности ВОПГ при
облучении ионами углерода и гелия для каждого
температурного интервала. Наиболее упорядо-
ченная структура графита формируется при тем-
пературе облучения 600°С.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Накопленные данные для различного вида уг-

леродных материалов показывают сильное влия-
ние температуры мишени, облучаемой ионами
углерода, на структуру и морфологию поверх-
ностного слоя. Так, облучение алмаза при ком-
натной температуре ионами С+ с энергиями поряд-
ка десятков кэВ приводит к образованию аморф-
ного поверхностного слоя. При повышенных
температурах (200–500°С) происходит графити-
зация алмаза с образованием на поверхности слоя,
имеющего металлическую проводимость [19]. Од-
нако при температурах в интервале 600–700°С им-
плантация ионов углерода не разрушает кристал-
лическую решетку и приводит к внутреннему ро-
сту алмаза [19, 20]. Аналогичное поведение с
температурой облучения проявляет противопо-
ложность алмаза по кристаллической упорядо-
ченности – стеклообразный углерод или просто
стеклоуглерод. Этот рентгенаморфный материал
можно назвать аморфным лишь условно, по-
скольку он имеет фулереноподобную наностру-
кутру, доставшуюся ему от сложной надмолеку-
лярной структуры полимерных препрегов. Так-
же, как и в случае алмаза, облучение ионами С+

стеклоуглерода при комнатной температуре при-
водит к разупорядочению его структуры, облуче-
ние при повышенных температурах 200–500°С –
к графитации и, наконец, при достаточно высо-
ких температурах облучения, более 500°С, струк-
тура стеклоуглерода сохраняется [21, 22]. Ионно-

Рис. 5. Спектры КРС ВОПГ до и после облучения ионами С+ и Не+ с энергией 30 кэВ Ф = 1 ⋅ 1018 ион/см2.
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индуцированные аморфизация и графитация яв-
ляются пороговыми по флюенсу облучения. Здесь
мы рассматриваем только большие флюенсы, выше
пороговых, когда структура поверхностного слоя
практически не меняется с флюенсом ионного об-
лучения, т.е. становится стационарной и зависит
только от температуры облучаемой мишени.

Что касается графита, то на практике имеют
дело с искусственными графитами большого чис-
ла марок и технологий. Наиболее близким к алло-
тропной форме кристаллического углерода как
по плотности, так и кристаллической структуре
является высокоориентированный пиролитиче-
ский графит (ВОПГ). Его часто используют как
модельный материал при изучении радиацион-
ных процессов в графитовых материалах, см., на-
пример, [13, 17]. Структура ВОПГ также сильно
меняется в зависимости от сорта ионов, флюенса
и температуры облучаемой мишени [10, 23].

Как уже отмечалось, для имитации нейтрон-
ного воздействия используют облучение различ-
ными ионами. При этом только облучение угле-
родом не вносит примеси в ядерные графиты и
кажется наиболее подходящим. Поскольку тор-
можение ионов углерода происходит аналогично
торможению смещенных атомов углерода как
при нейтронном, так и ионном облучении, изме-
ненный поверхностный слой при имплантации
ионов углерода будет отражать изменения в
структуре, вызываемые нейтронами в объеме ма-
териала. К настоящему времени накоплено зна-
чительное количество данных по аморфизации
ВОПГ нейтронным и ионным облучением при
температурах близких к комнатной [18, 24, 25].
Данных по самооблучению ионами С+ гораздо
меньше. Остается неясным, в частности, вопрос о
том, происходит ли внутренний рост ВОПГ, как в
алмазе и стеклоуглероде, и, если происходит, то
при какой температуре ВОПГ.

Полученные данные для облучения ионами С+

показывают, что отмеченные выше качественные
различия ионно-индуцированной морфологии на
поверхности ВОПГ соответствуют трем интервалам
различной ионно-лучевой модификации стеклоуг-
лерода и алмаза и по данным РЭМ и КРС могут
быть описаны следующим образом.

Облучение ВОПГ ионами углерода с энергией
30 кэВ при температуре Т = 50°С приводит к
аморфизации поверхностного слоя. Ионно-ин-
дуцированный максимум объемного разбухания
лежит под поверхностью на глубине максимума
радиационных смещений, см. рис. 1. Возникаю-
щий при этом градиент деформации вызывает
растягивающие напряжения и разрывы поверх-
ностного слоя в виде чешуйчатых отслоений с
гладкой поверхностью. В интервале температур
облучения от 150 до 500°С аморфизация не про-
исходит, но температура недостаточна для полного

динамического отжига радиационных нарушений в
графите. Слоистая глобулярная ионно-индуциро-
ванная морфология и спектры КРС соответствуют
турбостратному графиту. И, наконец, при дина-
мическом отжиге трехмерного графита T ≥ 600°С
происходит сохранение структуры ВОПГ с внут-
ренним эпитаксиальным ростом графита. Радиа-
ционный объемный рост приводит к многочис-
ленным продольным трещинам на зеркальной по-
верхности ВОПГ с отслаиванием чешуек с гладкой
поверхностью.

Сравнение модификации ВОПГ при облуче-
нии ионами С+ и Не+ при сопоставимом уровне
радиационных смещений показывает, что радиа-
ционные нарушения и их динамический отжиг
играют определяющую роль в модификации
ВОПГ облучением ионов Не+. При аморфизации
графита, которая происходит по данным, полу-
ченным в результате облучения ионами углерода
при температуре облучения Т = 50°С, высокодоз-
ная имплантация ионов гелия приводит также к
чешуйчатому расслоению. При всех структурных
состояниях облучаемого графитового слоя на че-
шуйках наряду со связанными с имплантацией
гелия блистерами наблюдаются также дефекты
пластической деформации в виде складок по-
верхности микронных размеров [12, 18].

В интервале температур облучения от 150 до
500°С, где радиационные нарушения по данным
облучения ионами С+ отжигаются частично и обра-
зуется турбостратный графит со слоистой структу-
рой, имплантация гелия также приводит к чешуй-
чатому расслоению поверхности. На поверхности
образуются макроскопические колодцы-кратеры
из концентрических перфорированных графито-
вых слоев. Число колец в колодцах тем больше,
чем больше флюенс облучения. Подобная структу-
ра на поверхности ниобия после облучения ионами
Не+ связывалась с формированием каналов выхода
имплантированного гелия после удаления кры-
шек блистеров [3].

При динамическом отжиге радиационных на-
рушений при Т = 600°С и сохранении трехмерно-
го упорядочения графита имплантация ионов
Не+ приводит к чешуйчатой фрагментации по-
верхности ВОПГ и тысячекратному расслоению
чешуек в виде типичных форм частиц терморас-
ширенного графита, см. рис. 2д и рис. 3б. Из-за
многократного уменьшения в процессе облуче-
ния плотности расслоенного вспененного графи-
та геометрический пробег ионов Не+ с флюенсом
многократно возрастает. В результате толщина
вспененного поверхностного слоя может состав-
лять десятки мкм, что на три порядка величины
больше проективного пробега около 200 нм. На-
чинающееся от поверхности расслоение приво-
дит к образованию лепестковой структуры вспе-
ненного графита, аналогично лепестковой структу-
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ре ТРГ при терморасширении интеркалированного
графита [11]. Интеркалянтами при получении ТРГ
служат различные молекулярные соединения (H2-
SO4, Br2, SbCl5 и др.), которые при быстром нагре-
ве разлагаются и вспенивают графит. Характер-
ными при этом являются газонаполненные пузырь-
ки с остаточным интеркалянтом в морфологии
вспененного графита. Наблюдаемые при облуче-
нием ионами Не+ блистеры на чешуйках (рис. 4а)
являются визуальным аналогом пузырьков в ТРГ,
хотя механизм образования блистеров при им-
плантации гелия представляется существенно
другим. Имеются весомые доказательства об от-
сутствии гелия в блистерах, а их образование свя-
зано с ионно-индуцированными сжимающими
напряжениями [26, 27].

Надо отметить, что отмеченные радиацион-
ные эффекты являются максимальными для
ВОПГ и могут в той или иной степени проявлять-
ся в разрабатываемых конструкционных реактор-
ных графитах. В частности, в [28] показано, что
облучение ионами He+ различных по микро-
структуре углеродных материалов при одних и тех
же условиях приводит для ВОПГ к аналогичному
описанному выше чешуйчатому расслоению по-
верхности, для углеродного волокна из ПАН с
упорядоченной структурой оболочки к расслаи-
ванию на ленты вдоль оси волокна, для углерод-
ного волокна из вискозы с преобладающей
аморфной структурой к появлению на гладкой
поверхности волокна блистеров и, наконец, для
стеклоуглерода к отсутствию видимых морфоло-
гических изменений.

ЗАКЛЮЧЕНИЕ

Сравнение модификации ВОПГ при облуче-
нии ионами углерода и гелия при сопоставимом
уровне радиационных смещений показывает, что
радиационные нарушения и их динамический от-
жиг играют определяющую роль в модификации
ВОПГ облучением ионами гелия и приводят как к
эффектам радиационных нарушений решетки
графита, так и к эффектам внедрения гелия при
имитации взаимодействия продуктов термоядер-
ного синтеза с графитовыми материалами. Дина-
мический отжиг при температуре ВОПГ 600°С
приводит наряду с чешуйчатой фрагментацией
поверхности при меньших температурах к тыся-
чекратному расслоению чешуек в виде типичных
форм частиц вспененного расслоенного графита.
Такие значительные эффекты модификации гра-
фита надо учитывать, если для имитации облуче-
ния нейтронами в реакторах используется облу-
чение ионами гелия.
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Abstract—The effect of high-fluence irradiation on the morphology and structure of highly oriented pyrolytic
graphite UPV-1T by carbon ions with energies of 30 keV and helium ions with energies of 10 and 30 keV in
the temperature range from room temperature to 600°C with f luence (1.0 – 4.5) × 1018 ions/cm–2 has been
studied experimentally. It is shown that implantation of helium ions leads both to the effects of dynamic an-
nealing of radiation damage of the graphite crystal structure and to the effects of helium implantation in sim-
ulating the interaction of fusion products with graphite materials.

Keywords: highly oriented pyrolytic graphite, irradiation with C+ and He+ ions, radiation damage, surface
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