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При моделировании нейтронных dd-генераторов необходимо учитывать падение энергии дейтро-
нов на шаге моделирования, которое приводит к быстрому падению сечений неупругих dd-взаимо-
действий. Предложен алгоритм оптимального выбора шага моделирования для неупругого dd-вза-
имодействия, учитывающий снижение энергии дейтронов на шаге. С использованием закона Лин-
дхарда (при малых энергиях энергетические потери заряженной частицы пропорциональны ее
скорости) разработан алгоритм коррекции потерь энергии дейтронов на шаге. Использование этих
алгоритмов позволяет ускорить моделирование мишени нейтронного dd-генератора на порядок.
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1. ВВЕДЕНИЕ
При численном Монте-Карло моделировании

выхода нейтронов в нейтронных dd-генераторах
обычно возникает неточность, связанная с ко-
нечностью шага моделирования в связи с тем, что
сечения всех физических процессов зависят от
энергии в начале шага без учета уменьшения
энергии на длине шага. При уменьшении энергии
сечение реакции неупругого dd-рассеяния экспо-
ненциально падает в соответствии с фактором Га-
мова как

(1)

где  – энергия Гамова, в случае
dd-рассеяния равная 0.986 МэВ, ECM = ELSM/(m +
+ M) – кинетическая энергия в системе центра
масс,  – приведенная масса ре-
акции,  – постоянная тонкой структуры, а , 
и ,  – заряды и массы налетающего ядра и яд-
ра-мишени соответственно. Поскольку энергия
пучка дейтронов, которым в нейтронных генера-
торах облучается мишень, порядка сотни кило-
электронвольт, падение сечения на шаге модели-
рования существенно снижает выход нейтронов
по сравнению с предсказанием моделирования.

Поскольку при Монте-Карло моделировании
в однородной среде энергия дейтрона считается
неизменной на шаге, а сечение быстро падает при
уменьшении энергии, средняя длина свободного
пробега оказывается заниженной, и число не-
упругих dd-реакций завышается, что в итоге при-
водит к переоценке расчетной величины нейтрон-
ного выхода. Чтобы снизить эту систематическую
погрешность, обычно уменьшают ограничение
шага моделирования до предельно допустимых
по времени счета значений и экстраполируют
расчетный нейтронный выход к нулевому шагу,
но это очень затратная по времени процедура. Бо-
лее оптимальным решением является алгоритм
непрерывной интегральной коррекции энергии
сечения неупругой dd-реакции в соответствии с
законом Линдхарда и слабым изменением астро-
физического S-фактора. Такой выбор оптималь-
ного шага избавляет от необходимости ограничи-
вать шаг очень малой величиной, а, значит, уве-
личивает производительность моделирования
мишеней нейтронных dd-генераторов.

2. ЭЛЕКТРОННЫЕ ПОТЕРИ ЭНЕРГИИ  
В ОБЛАСТИ МАЛЫХ ЭНЕРГИЙ

В области малых энергий электронные энерге-
тические потери  дейтронов в дейтериде ти-
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тана, как и во многих других материалах, с хорошей
точностью подчиняются зависимости ,
что показано черной точечной прямой на рис. 1.
Черными точками на рис. 1 изображены оценен-
ные электронные энергетические потери прото-
нов в дейтериде титана, полученные при исполь-
зовании удельных электронных потерь протонов
в дейтерии и титане из базы данных PSTAR [1] по

формуле  [2], позволяющей вычис-

лять потери в составном материале, представляю-
щем собой смесь элементов с массовой долей  с

удельными энергетическими потерями  в каж-

дом из моноэлементных материалов. Сплошной
кривой изображена аппроксимирующая функция:

(2)

где  и  – заряд и масса иона. Обычно 
разных ионов в одном и том же материале зависит
от скейлинговой переменной  [2]. Пунктир-
ная кривая показывает удельные энергетические
потери для дейтронов, а штрихпунктирная – для
ионов титана.

(3)
где используется безразмерная величина скоро-
сти в единицах скорости света c, масса дейтрона
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 МэВ, плотность дейтерида титана
считается постоянной, равной  г/см3, а
коэффициент пропорциональности 
⋅ 104 МэВ ⋅ см2/г был найден путем аппроксима-
ции экспериментальных данных на рис. 1. В ре-
зультате интегрирования получаем

(4)

где  – расстояние до точки остановки дейтрона,
в которой , или при :

(5)

Расстояние до точки полной остановки дей-
трона с  кэВ – примерно 0.86 мкм.

3. КОРРЕКЦИЯ СЕЧЕНИЯ НЕУПРУГОГО dd-
РАССЕЯНИЯ НА ШАГЕ МОДЕЛИРОВАНИЯ

Сечение реакции неупругого dd-рассеяния за-
писывается как

(6)

где  – астрофизический S-фактор, а фак-
тор Гамова  определен в (1).

Астрофизические S-факторы обоих каналов
(n + 3He и p + t) реакции неупругого dd-рассеяния
изображены на рис. 2, где экспериментальные
точки взяты из базы оцененных ядерных данных
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Рис. 1. Электронные энергетические потери dE/dx для протонов, дейтронов и ионов титана в дейтериде титана.
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ENDF/B-VII.1 [3] и аппроксимировались схожи-
ми дробно-рациональными функциями:

(7)

для n + 3He канала и

(8)

для p + t канала неупругой dd-реакции, где все
константы дроби и  измеряются в мегаэлек-
тронвольтах, а коэффициенты пропорциональ-
ности в МэВ ⋅ бн.

Поскольку при dd-рассеянии  и в
области малых энергий с хорошей точностью вы-
полняется (5), можно написать

(9)

где

и в качестве S-фактора используется либо (7), ли-
бо сумма выражений (7) и (8) для обоих каналов
реакции в зависимости от того, какая величина
рассчитывается: либо только выход нейтронов в
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n + 3He выходном канале реакции, либо полное
число произошедших реакций неупругого рассе-
яния.

Если на мишень нейтронного генератора па-
дает поток из N дейтронов, то доля дейтронов ΔN,
которые примут участие в реакции неупругого
рассеяния при прохождении расстояния x в ми-
шени, определяется как

(10)

где  – концентрация дейтронов в мишени. То-
гда вероятность дейтрону принять участие в не-
упругой dd-реакции до точки своей полной оста-
новки можно рассчитать, как

(11)

Здесь l имеет смысл длины шага дейтрона, что
позволяет связать переменные интегрирования
как x = xE – l. При кинетической энергии налета-
ющего дейтрона 100 кэВ вероятность взаимодей-
ствия W = 5.7 ⋅ 10–8, а при 10 кэВ – W = 3.1 ⋅ 10–12.

Отсюда для случайного числа R, равномерно
распределенного на отрезке от 0 до 1, длина шага
l дейтрона в реакции неупругого dd-рассеяния
разыгрывается как
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Рис. 2. S-факторы каналов реакции неупругого dd-рассеяния в зависимости от кинетической энергии в системе центра
масс (сплошная кривая – d(d, n)3He, штриховая – d(d, p)t).
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(12)

Предлагаемый алгоритм коррекции пробега в
реакции неупругого dd-рассеяния состоит из двух
этапов и осуществляется для каждого дейтрона на
каждом шаге моделирования. На первом этапе
необходимо вычислить вероятность W (11) дей-
трону принять участие в неупругой dd-реакции до
остановки. Далее, если равномерно распределен-
ное на отрезке от 0 до 1 случайное число R1 > W, то
дейтрон на шаге не принимает участия в неупру-
гой dd-реакции. В противном случае при помощи
случайного числа R2 согласно (12) разыгрывается
шаг дейтрона до неупругого взаимодействия, и
эта величина участвует в конкуренции с шагами,
соответствующими всем другим процессам физи-
ческих взаимодействий, и только в случае, если
она оказывается наименьшей из них, дейтрон не-
упруго взаимодействует с дейтроном мишени в
конце шага моделирования. Понятно, что сече-
ние упругого рассеяния много больше сечения
неупругой dd-реакции, поэтому шаги до неупру-
гого взаимодействия дейтрона случаются крайне
редко.

4. КОРРЕКЦИЯ ЭЛЕКТРОННЫХ  НА 
ШАГЕ МОДЕЛИРОВАНИЯ

Величину удельных электронных энергетиче-
ских потерь  ионов дейтерия в материале
мишени в начале шага можно рассчитывать по
точной аппроксимации (2) экспериментальных
данных с учетом скейлингового пересчета от
протонов к дейтронам и ионам титана. Для по-
лученного значения нужно для каждого дейтро-
на на каждом шаге согласно (3) вычислить соот-
ветствующий коэффициент пропорциональности

. Этот коэффициент,

деленный на , дает связь между изменением
скорости и величиной пробега дейтрона в пред-
положении (3). То есть при длине пробега дейтро-
на на шаге l можно вычислить его скорость в кон-
це шага как  и, таким образом,

подсчитать энергию в конце шага как . В
результате величина потерь энергии дейтрона на
шаге будет равна . Такой алгоритм
позволяет в соответствии с (3) вычислять непре-
рывное уменьшение энергии частиц на шаге.

5. МОДЕЛИРОВАНИЕ ВЫХОДА НЕЙТРОНОВ 
В МИШЕНИ НЕЙТРОННОГО 

dd-ГЕНЕРАТОРА
Моделирование проводилось с использовани-

ем разработанной во ВНИИА им. Духова высоко-

=
−

ln
.

ln
E

G E

x R
l

R x x

dE dx

dE dx

( )= ρ2
2 2

TiD
TiD in TiD in/

pdE
B E V

dx
Dm

= −
2fin in TiD DV V B m l

2
D fin /2m V

−2 2
D in fin( )/2m V V

производительной параллельной программы пе-
реноса радиации TPT3 [6]. Перпендикулярно торцу
мишени из вакуума в нее запускалось 25 млрд пер-
вичных дейтронов с энергией 100 кэВ. Мишень
считалась состоящей из однородного материала
дейтерида титана, т.е. не учитывалась возможная
неоднородность ее набивки, а также оксидный
слой на ее поверхности, который слабо влияет на
результаты моделирования.

Программа TPT3 помимо запуска на централь-
ных процессорах может запускаться и на видео-
картах NVIDIA, на которых при помощи стандар-
та препроцессорных директив OpenAcc [7] и языка
программирования CUDA C [8] осуществляются
высокопроизводительные расчеты.

При моделировании применялся метод мас-
штабирования (biasing) малых сечений, использу-
емый также в приложениях программы Geant4
[9], который позволяет за то же время счета уве-
личить статистическую точность результатов мо-
делирования. Применительно к относительно
малому сечению неупругой dd-реакции этот ме-
тод заключается в том, что сечение  (примерно
0.03 бн при 100 кэВ), на 7 порядков меньшее сече-
ния упругого рассеяния (примерно 690 кбн),
умножается на масштабирующий коэффициент
порядка 104. Во столько же раз уменьшается чис-
ло полученных в моделировании неупругих реак-
ций. При моделировании мишени нейтронного
генератора этот метод позволяет за то же время на
два порядка увеличить статистическую точность
расчетов.

Вероятность нейтронного выхода можно оце-
нить и без непосредственного моделирования
протекания в мишени неупругой dd-реакции. До-
статочно посчитать флюенс дейтронов в мишени
и свернуть его с энергетической зависимостью
сечения неупругой реакции. Поскольку флюенс
имеет физический смысл плотности потока ча-
стиц в моделируемой области объемом V, то как
плотность потока после деления на V измеряется
в единицах см–2 ⋅ МэВ–1. Чтобы учесть, с чем вза-
имодействует поток дейтронов, надо умножить
его на концентрацию дейтронов в мишени :

(13)

Это выражение определяет количество рож-
денных нейтронов на один запущенный дейтрон.
Физическим смыслом подынтегрального выра-
жения является то, сколько нейтронов произво-
дит первичный дейтрон при уменьшении его
энергии от  до . Аналогичное (13) для
полного сечения неупругой dd-реакции количе-
ство неупругих реакций составило примерно
вдвое большую величину 5.88 ⋅ 10–8. Было найде-
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но, что уже при 20 кэВ вклад дейтронов в произ-
водство нейтронов составляет менее 3% от вклада
дейтронов с энергией Emax = 100 кэВ, поэтому в
качестве энергии обрезания была с запасом вы-
брана величина Emin = 10 кэВ, при кинетической
энергии ниже которой дейтроны исключались из
моделирования.

Результаты моделирования числа произошед-
ших реакций неупругого dd-рассеяния без кор-
рекции, с коррекцией по энергии пробегов дей-
тронов в неупругих взаимодействиях, а также с
коррекцией удельных электронных энергетиче-
ских потерь  представлены на рис. 3.

Поскольку сечение реакции неупругого dd-
рассеяния вычисляется как функция кинетиче-
ской энергии дейтрона в начале шага, это приво-
дит к переоценке числа произошедших неупругих
реакций, которая уменьшается ограничением на
максимальный размер шага моделирования. Про-
грамма TPT3 использует воксельную геометрию,
т.е. декартову сетку, разбивающую моделируе-
мый объём на прямоугольные параллелепипеды
(воксели). Размер вокселя ограничивает в про-
грамме максимальный шаг моделирования. На
рис. 3 зависимость полученного числа неупругих
реакций от размера вокселя без коррекций пока-
зана квадратами. С уменьшением размера воксе-
ля число неупругих реакций, уменьшаясь, стре-
мится к расчетной величине. Расчетная величи-
на определяется интегралом свертки и составляет
25 ⋅ 109 ⋅ 5.88 ⋅ 10–8 = 1470. Величина нейтронного

dE dx

выхода вычисляется в первом приближении как
половина этого значения, а для точного расчета не-
обходимо учесть соотношение интегралов свертки
для n + 3He и для обоих каналов неупругой dd-ре-
акции. Вариант без коррекций стремится к рас-
четному значению медленно, так что для хорошей
точности совпадения с расчетной пунктирной
прямой необходимо уменьшать ограничение ша-
га (длину ребра вокселя) до 2.6 нм, что соответ-
ствует самому левому квадрату на рисунке.

При использовании коррекции шага до не-
упругой dd-реакции (круги на рис. 3) число не-
упругих dd-реакций снизу-вверх приближается к
тому же расчетному значению. Это вызвано тем,
что коррекция шага неупругой реакции немного
занижает среднее сечение. Соответственно, при
большой длине ребра вокселя на правой части
рис. 3 эффект занижения сечения приводит к вы-
ходу нейтронов меньше расчетного значения, а
при уменьшении длины шага он стремится к рас-
четному значению значительно быстрее, чем без
коррекций. Погрешности точек, показанных на
рис. 3, меньше размера маркеров.

Наилучшее совпадение с расчетным значени-
ем практически без дополнительного ограниче-
ния шага моделирования демонстрирует вариант
коррекции по кинетической энергии сечения не-
упругой dd-реакции и коррекции энергетических
потерь иона на шаге моделирования, изображен-
ный треугольниками. Как видно из рис 3, он
обеспечивает процентную точность вычисления
числа произошедших неупругих реакций даже без

Рис. 3. Число произошедших реакций неупругого dd-рассеяния в мишени из дейтерида титана для 25 млрд запущен-
ных первичных дейтронов с начальной кинетической энергией 100 кэВ в зависимости от длины ребра ячейки вокселя.
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ограничения на шаг моделирования (самый пра-
вый треугольник).

На рис. 4 показана абсолютная величина отно-
сительного отклонения промоделированного зна-
чения нейтронного выхода от его значения, рассчи-
танного при помощи флюенса дейтронов в мишени
и интеграла свертки, в зависимости от времени сче-
та на один запущенный дейтрон. Как видно, при
моделировании без коррекций (квадраты) при наи-
большей длине ребра вокселей a = 0.5 мкм вели-
чина нейтронного выхода определяется с по-
грешностью в примерно 70%, а при достижении
естественного предела ограничения шага, опре-
деляемого расстоянием между атомами, не опус-
кается ниже 1%. В то же время вариант моделиро-
вания с коррекцией сечения неупругой dd-реак-
ции даже без ограничения на шаг моделирования
обеспечивает точность примерно в 5%, а исполь-
зование дополнительно коррекции  дает
точность определения нейтронного выхода на
уровне 1% (самые левые круги и треугольники).

Как видно из рис. 4, по скорости сходимости
результатов к точному решению вариант модели-
рования с обеими коррекциями на порядок быстрее
моделирования без коррекций (примерно 1.5 мкс
против 15 мкс на один первичный дейтрон) обес-
печивает процентную точность определения ве-
личины нейтронного выхода. В то же время точ-
ность выхода нейтронов в 1% при моделировании с
коррекцией только на шаг неупругого dd-рассеяния

dE dx

достигается за 4 мкс на один первичный дейтрон,
т.е. обе коррекции примерно в равной степени важ-
ны.

7. ЗАКЛЮЧЕНИЕ

Показано, что предложенные алгоритмы кор-
рекции шага моделирования для неупругой dd-
реакции и удельных электронных энергетических
потерь  ионов дейтерия на шаге моделиро-
вания позволяют примерно на порядок ускорить
расчет выхода нейтронов с точностью 1% в ней-
тронных dd-генераторах. Предлагаемое решение
при однородной набивке мишени дейтронами и
тритонами применимо и для мишеней нейтрон-
ных dt-генераторов. С небольшими дополнения-
ми предложенный метод можно применять и при
наличии оксидного слоя на поверхности мише-
ни, и при ступенчатом описании неравномерной
набивки титана ионами водорода.
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Abstract—When modeling neutron dd-generators, it is necessary to take into account the deuteron energy
drop in the simulation step, which leads to a rapid drop in the inelastic dd-interaction cross sections. An al-
gorithm for optimal choice of the modeling step for inelastic dd-interaction is proposed, taking into account
the decrease of the deuteron energy per step. Using the Lindhard law (at low energies, the energy losses of a
charged particle are proportional to its velocity), an algorithm for correcting deuteron energy loss per step has
been developed. Using these two algorithms can speed up the modeling of a neutron dd-generator target by
an order of magnitude.
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