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На основании теории взаимодействия электронов с веществом (Бете, Гайтлер, Блох) при их много-
кратном рассеянии (Гоудсмит, Саундерсон) были получены аналитические выражения для коэф-
фициента пропускания электронов и выхода энергии тормозного излучения. Эти выражения зави-
сят от материала и толщины мишени и начальной кинетической энергии электрона. Также было
получено с несущественными упрощениями аналитическое выражение для пробега электронов, с
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ВВЕДЕНИЕ
Ускорители электронов с энергией в несколь-

ко десятков МэВ имеют широкое практическое
применение в основном в качестве источника
тормозного излучения в медицине, метрологии, а
также при проведении неразрушающего контро-
ля. Тормозное излучение генерируется в резуль-
тате взаимодействия электронного пучка ускори-
теля с мишенью – конвертором, выполненным из
материала с большим Z. Однако часть электронов
первичного пучка может проходить через ми-
шень, в результате чего образуется смешанное
поле тормозного и электронного излучения. Это
зависит от энергии первичных электронов, мате-
риала и толщины мишени. Знание характеристик
такого поля для конкретных параметров мишени,
таких как примесь электронной составляющей, вы-
ход тормозного излучения, энергетическое распре-
деление тормозного и электронного излучения
является важной задачей особенно в метрологии
и медицине. Экспериментальное исследование
характеристик смешанного поля, с учетом его вы-
сокой интенсивности, является сложной и подчас
трудновыполнимой задачей, поэтому расчетная
оценка приобретает особую ценность.

Состав смешанного поля тормозного и элек-
тронного излучения можно оценить, рассчитав ко-
эффициент пропускания электронов и выход тор-
мозного излучения как функции толщины мишени.

Коэффициент пропускания электронов опреде-
ляют как отношение числа электронов, прошед-
ших слой мишени толщиной , к числу падаю-
щих электронов. Выход тормозного излучения
есть отношение энергии тормозных фотонов, вы-
шедших из мишени и образованных первичными
электронами, к начальной энергии электронов.

Решения физических задач не редко содержат
различные специальные функции (Бесселя, гамма-
функция Эйлера и др.). В последние 30 лет появи-
лось несколько работ в англоязычной [1–3] и рус-
скоязычной литературе [4], посвященных сравни-
тельно недавно появившейся специальной функ-
ции – -функции Ламберта и ее применениям в
задачах физики.

Целью настоящей работы является получение
аналитических выражений для вычисления ко-
эффициента пропускания электронов и выхода
энергии тормозного излучения в зависимости от
толщины и материала мишени и начальной кине-
тической энергии электронов. Расчет этих величин
основывается на теории взаимодействия электро-
нов с веществом Бете−Гайтлера.

РАСЧЕТ ПРОБЕГА ЭЛЕКТРОНОВ
Для расчета коэффициента пропускания элек-

тронов необходимо получить величину пробега.
Рассмотрим формулу Бете−Блоха, описывающую
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средние потери энергии электроном на единице
длины пути за счет процессов ионизации атомов
среды и излучения тормозных гамма-квантов [5]

(1)

где ,  – потери энергии на
ионизации среды и излучение, соответственно
[МэВ/см], ,  – масса и кинетическая энергия
электрона [МэВ],  – потенциал
ионизации [МэВ],  – зарядовое число материа-
ла мишени,  [МэВ/см],  – концен-
трация атомных электронов среды [ ],

 – классический радиус электрона
[см], L = ne (Z + ,
[см–1].

В приближении непрерывного замедления
пробег вычисляется по формуле [6]

(2)

где  – начальная кинетическая энергия элек-
трона.

Выражение для ионизационных потерь энер-
гии (1) упростим и запишем выражение для сум-
марных потерь энергии:

(3)

где  [МэВ–1].
Выражение (2) запишем с учетом формулы (3)

и преобразуем

(4)

где . Интеграл в формуле (4) можно
представить, как:

Первый интеграл в сумме после замены подын-
тегральной функции на  равен:
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где  – интегральная показательная функция
[7],  – основная ветвь -функции Ламбер-

та [4], ,  – основа-
ние натурального логарифма.

Рассмотрим второй интеграл в сумме. Делая
замену переменной , получаем:

(6)

где  – дополнительная ветвь -функции
Ламберта [4]. Рассмотрим интеграл в выражении
(6):

(7)

В выражении (7) нахождение первообразной
от подынтегральной функции 

 станет проще, если заменить 

на функцию :

(8)

Функция  на отрезке  для
 МэВ имеет колоколообразный вид. Функ-

ция  будет удовлетворительно аппроксими-
ровать кривую , если величины и положения
их максимумов, а также величины полных ширин
на половине максимума (ПШПМ) будут совпадать.

Положение максимума  определяется
уравнением:

(9)

Решая уравнение (9), получаем выражение
для положения максимума
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 – обобщенная W-функция Лам-

берта [3],  – золотое сечение.
Запишем уравнение, определяющее ПШПМ:

(10)

где . Решая уравнение (10) и полагая

член  малой величиной, получаем выраже-
ние для большего корня , где

 – -функция Ламберта [3].
ПШПМ  и  должны быть равны. Со-

ответственно

(11)

Преобразуем и перепишем уравнение (11)

(12)

Для того чтобы равенство (12) выполнялось,
заменим  на . Получившееся уравнение реша-
ем относительно  и получаем:

Перепишем интеграл из (8) как сумму двух ин-
тегралов:

(13)

Рассмотрим более общий интеграл

Делая замену переменных  и используя
метод интегрирования по частям  раз, получаем,
что интеграл  равен

(14)

где  – обобщенная гипер-
геометрическая функция [7]. Обозначение  в
выражении (14) означает  параметр, равный .
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Используя выражения (4)–(8), (13), (14), полу-
чаем выражение для пробега электрона с началь-
ной энергией  в заданном веществе в см

(15)

На рис. 1 изображены пробеги электронов как
функции  для вольфрама и серебра.

В области энергий ниже 10 МэВ расхождение
между формулами (2) и (15) увеличивается по ме-
ре уменьшения начальной энергии. Данное рас-
хождение может быть результатом того, что фор-
мула Бете−Блоха для тормозной способности ве-
щества в случае электронов и ее упрощение (3) в
области энергий ниже 1 МэВ носят существенно
различный характер зависимости от энергии.

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ 
ЭЛЕКТРОНОВ

На основании работы [9] коэффициент про-
пускания можно представить в виде:

(16)

где  – экстраполированный пробег электро-
нов, см, ,  – безразмерные коэффициенты, за-
висящие от параметров среды и начальной энер-
гии электрона,  – толщина мишени, см.

Согласно работе [6], проекционный пробег
определяется формулой:

где  – дифференциальное распределение наи-
более дальних глубин проникновения в мишень,
т.е. . Обозначим величину  за .
С учетом выражения (16), после интегрирования,
выражение для проекционного пробега будет
иметь вид:

Для электронов проекционный пробег с мак-
симальной глубиной проникновения  связан
соотношением [6] .

В первом приближении уравнение, связываю-
щее  и , имеет вид:
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где  – угол отклонения траектории электрона от
первоначального движения после прохождения
толщины . Эту величину определим из средне-
квадратичного отклонения угла многократного
рассеяния из теории Гоудсмита и Саундерсона [10]

где

 – концентрация атомов среды, см–3,  – полная
начальная энергия электрона [МэВ],  –
постоянная тонкой структуры. Решая уравнение
(17), разложив косинус до члена первого порядка
и используя свойство 
[4], получаем следующее выражение

(18)
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Коэффициент пропускания приобретает вид:
.

Толщину мишени, за которой поток электро-
нов уменьшается в два раза, обозначим как . На
этой толщине кривая коэффициента пропуска-
ния электронов имеет максимальное значение
производной. Величина  имеет следующий вид:

Запишем производную функции  в точке
, продифференцировав , а также, в геомет-

рическом смысле

(19)
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В работе [11] отношение  к  задается следу-
ющим выражением:
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Рис. 1. Сравнение аналитических (15) и рассчитанных численным интегрированием (2) кривых пробегов электронов
в зависимости от  для вольфрама и серебра. Точки соответствуют данным из [8].

Формула (15)

Формула (2)

Формула (15)

Формула (2)

0 10 20 30 40 50

W

Rcsda, см

T0, МэВ

100

10–1

10–2

Ag

0T



ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ  том 16  № 6  2025

ПРИМЕНЕНИЕ W-ФУНКЦИИ ЛАМБЕРТА К РАСЧЕТУ КОЭФФИЦИЕНТА 827

где  ,

, , , .

Приравнивая выражения (19) и (20), получаем

уравнение для определения параметра 

Используя программу переноса излучения
GEANT 4, были получены коэффициенты про-
пускания электронов из вольфрамовой мишени
(рис. 2). Для определения физических процессов
в модели использовался класс G4EmLivermore-
Physics.

На рис. 2 коэффициенты пропускания для на-
чальной кинетической энергии электронов 10, 15

и 20 МэВ в интервале толщин  см имеют от-
носительное отклонение от расчета методом
Монте-Карло не более 40, 1.9 и 20%, соответ-
ственно. Причиной расхождений может являться
иной, от формулы Бете−Блоха, ход кривой энер-
гетических потерь, предложенной в упрощенном
виде выше, при энергиях ниже 1 МэВ. Также при
расчете коэффициентов формулы (16) не учтены
флуктуации потерь энергии и пробегов и эффект
плотности среды.

( )= − + τ 4

0 1 2 3 0exp /(1 ) ,
as a a a = 0.232

1 10.63/a Z

= 0.463

2 0.22a Z =3 0.042a =4 1.86a τ =0 0/E m

f

( ) ( )
( )
− − − =  − 

1/

1/

ex 0

1 1/1
1 exp 1

2
.

f
f f

q f
f R t

− ex0 R

ВЫХОД ТОРМОЗНОГО ИЗЛУЧЕНИЯ

Для расчета выхода энергии тормозных гамма-
квантов из мишени будем учитывать только пол-
ные потери энергии первичных электронов и
процессы поглощения тормозных гамма-квантов
в веществе.

В работе авторы [12] приводят выражение для
энергии тормозных гамма-квантов, вышедших из
мишени толщиной 

(21)

где  – линейный коэффициент поглощения фо-

тонного излучения [см–1].

Выражение для потерь энергии на излучение

зависит от кинетической энергии электрона .
По мере проникновения электрона вглубь мише-

ни  будет уменьшаться и на глубине  его энер-

гия будет равна . Для получения зависимо-

сти  приведем выражение для ионизацион-

ных потерь энергии к линейному виду. Разложим
логарифм в (3) в ряд Тейлора в окрестности точки

 и вычтем некоторый параметр :

(22)

t

( ) ( ) ( )( ) ( )= η −μ −
rad0

exp ,

t
dEY t x t x dx
dx

μ

0T

0T x
( )T x

( )T x

0T τ

( ) ( ) −= γ + − τ 
 

0
0

ion 0

3 ln .
T TdE K T

dx T

Рис. 2. Зависимость коэффициентов пропускания электронов  от толщины мишени  при : 10 МэВ (  = 2.21),

15 МэВ (  = 2.31), 20 МэВ (  = 2.35). Коэффициенты пропускания из работы [11]: 1 – 10 МэВ, 2 – 15 МэВ, 3 – 20 МэВ.

Точки соответствуют расчету Монте-Карло:  – 10 МэВ,  – 15 МэВ,  – 20 МэВ.
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Находим , минимизируя интеграл от квадрата

разности между упрощенной формулой 

и выражением (22):

где  – основание натурального логарифма. Выра-
жение для полных потерь энергии приобретает вид

(23)

Разделяя переменные в (23) и интегрируя от 

до  и от 0 до  левую и правую части уравнения,
соответственно, находим зависимость кинетиче-
ской энергии электрона от пройденного им пути
в материале мишени

(24)

где .

Перепишем выражение для потерь энергии на
излучение с учетом (24)

(25)

где , Λ = L(3K ·
· ln(γT0/e) – τ)/r.

После подстановки (25) в (21) и соответствую-

щих преобразований с учетом того, что  = 2–2.5

для  до 50 МэВ, вычисление интеграла (21) при-
водит к следующему выражению:

(26)

где , ,

, , , 

, 

,  – нижняя неполная гамма-

функция [7],  – функция ошибок [7].

ОЦЕНКА 

В выражениях (21), (26) линейный коэффици-
ент поглощения фотонного излучения  является

τ
( )

ion
/dE dx

( )
γ

  γ γ − + − τ →      

γ γ + − γ
τ =

− γ


0

0

01/

2 2

0 0 0

0

3
3 ln 3 ln min,

2ln(1/ )/ ( 1/ )/
3 ,

2( 1/ )

T
TKK T T K dT

T e

T T T
K

T
e
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0

tot 0
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0T x
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μ

μ

константой, но в общем случае этот параметр за-

висит от энергии гамма-кванта . С целью упро-

щения вычислений оценим . Согласно работе
[12], число тормозных гамма-квантов с энергия-

ми , образуемых в элементарном слое

 материала мишени, равно

где  – дифференциальное сечение

образования тормозного излучения электроном с

энергией , полученное Шиффом [12],  – ра-

диационная длина [г/см2],  – плотность веще-

ства [г/см3].

Запишем спектр тормозного излучения, фор-
мируемого первичным электронов, в мишени
толщиной :

Из этого спектра находим среднюю энергию

гамма-квантов с энергиями от 1 кэВ до  как
функцию толщины мишени :

Используя [13] и интерполируя для , на-

ходим параметр  как функцию от толщины ми-

шени .

Зависимость выхода энергии тормозного излу-
чения от толщины вольфрамовой мишени  в
сравнении с расчетом в программе GEANT 4 и ра-
ботой [14] показана на рис. 3.

Относительное отклонение формулы (26) от
рассчитанного выхода энергии методом Монте-
Карло в интервале толщин, показанных на рис. 3,

составляет не более 33, 33 и 31% для  равной 10,
15, 20 МэВ соответственно.

Из рис. 3 следует, что для кривых выхода, дава-
емых формулой (26), в области относительно не-
больших толщин вольфрамовых мишеней, рас-
хождение с Монте-Карло больше, чем у функции
выхода, полученной в работе [14]. При увеличе-
нии толщины мишени расхождение формулы
(26) с Монте-Карло уменьшается, расхождение
результатов работы [14] – увеличивается. Следует

отметить, что кривая , полученная в настоя-

щей работе, качественно лучше согласуется по
форме с данными GEANT 4, чем работа [14].

γE
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ЗАКЛЮЧЕНИЕ

В настоящей работе предложен метод для рас-
чета коэффициента пропускания электронов и
выхода энергии тормозного излучения как функ-
ций от толщины мишени. Получено аналитическое
выражение для пробега электронов, как функции
их начальной кинетической энергии, с использо-

ванием -функции Ламберта и ее обобщений. С
применением данной специальной функции най-
дены коэффициенты в выражении для вычисле-
ния коэффициента пропускания электронов. Ис-
пользуя выражение Бете−Блоха для средних по-
терь энергии электроном на единице длины пути
за счет излучения тормозных гамма-квантов, по-
лучено аналитическое выражение выхода энер-
гии тормозного излучения из мишени данного
материала.

Продемонстрирована еще одна задача матема-
тической физики помимо уже известных [4, 15],

которая решена с использованием -функции
Ламберта. Это говорит о важности данной специ-
альной функции для математической физики.

Полученные выражения для величин  и

 могут быть использованы в качестве их оцен-

ки при решении прикладных задач с использова-
нием тормозного излучения, в области энергий
электронов до 20 МэВ. Например, для оптимиза-
ции толщины мишени – конвертора при созда-

W

W

( )η t
( )Y t

нии полей тормозного излучения с использова-
нием электронных ускорителей. В области метро-
логии ионизирующих излучений − для оценки
характеристик полей тормозного и электронного
излучений. В медицинской физике − для обеспе-
чения гарантии качества облучения пациентов.
Кривая коэффициента пропускания электронов
может использоваться для оценки толщины за-
щиты из определенного материала от моноэнер-
гетического электронного излучения в барьерной
геометрии.
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Application of the Lambert W-function to the Calculation of the Electron Transmission 
Coefficient and the Yield of Bremsstrahlung from the Bethe-Heitler Theory
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Abstract—Based on the theory of the interaction of electrons with matter (Bethe, Heitler, Bloch) during their
multiple scattering (Goudsmit, Saunderson), analytical expressions were obtained for the electron transmis-
sion coefficient and the energy yield of bremsstrahlung. These expressions depend on the material and thick-
ness of the target and the initial kinetic energy of the electron. An analytical expression for the electron range
was also obtained with insignificant simplifications, using the Lambert-function.

Keywords: electrons, bremsstrahlung, target, Lambert-function, range
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