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В работе представлены результаты исследования физико-химических характеристик и радиосенси-
билизирующих свойств нового типа наночастиц фторида лютеция (LuF3), как перспективного на-
норадиосенсибилизатора при облучении рентгеновскими лучами клеток меланомы линии B16/F10.
В рамках данной работы нами проведен комплексный анализ функциональных характеристик син-
тезированных наночастиц LuF3, анализ их цитотоксичности, а также продемонстрировано их ра-
диосенсибилизирующее действие in vitro. Показано, что наночастицы LuF3 имеют гидродинамиче-
ский диаметр менее 200 нм, а полученный на их основе коллоидный золь обладает высокой стабиль-
ностью за счет использования биосовместимого стабилизатора- цитрата аммония. Наночастицы LuF3
обеспечивают цитотоксический и радиосенсибилизирующий эффект по отношению к клеткам мелано-
мы в концентрациях от 116 мг/мл и выше, через снижение их метаболической активности и
мембранного митохондриального потенциала, а также инициации апоптоза. Такой наноматериал мо-
жет лечь в основу при создании перспективных современных подходов повышения эффективности
лучевой терапии.
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ВВЕДЕНИЕ

Одним из подходов в создании перспективных
нанорадиосенсибилизаторов является использо-
вание веществ, способных эффективно поглощать
ионизирующее излучение и переизлучать его в виде
фотонов или электронов [1]. Облучение фторсо-
держащих соединений рентгеновскими лучами
может индуцировать радиолюминесценцию, что
приводит к генерации электронов, которые запус-
кают процессы повреждения клеточных структур
[2]. Хорошим кандидатом на такое соединение мо-
жет быть фторид лютеция, который обладает вы-
раженной радиолюминесценцией. Исходя из
данных Международного агентства по изучению
рака и Национального института рака, лучевая
терапия является одним из методов лечения он-
кологии, который применяется совместно с дру-
гими методами. Лучевая терапия может приме-
няться как самостоятельный метод, так и в ком-
бинации с химиотерапией в рамках программ

лечения рака [3–5]. Исследования показали, что
различные типы наночастиц усиливают радиочув-
ствительность раковых клеток путем регуляции
различных биологических процессов, включая
развитие окислительного стресса, повреждение
ДНК, остановку клеточного цикла, апоптоз, ауто-
фагию и механизмы, связанные с гипоксией [6–14].
Также показано, что наночастицы на основе метал-
лов высоким атомным номером (Z) усиливают ра-
диочувствительность опухолевых клеток [15–17].
Наночастицы с высоким Z обладают свойствами,
за счет которых повышают вероятность фотоэлек-
трических эффектов и взаимодействий комптонов-
ского рассеяния [18–20]. При облучении фторсо-
держащих соединений рентгеновскими лучами ин-
дуцируется процесс радиолюминесценции, что
является физической основой прямого поврежда-
ющего действия таких материалов, в случае их на-
хождения в цитоплазме или лизосомах опухоле-
вых клеток [21–22]. Таким образом использова-
ние фторидов редкоземельных элементов в виде
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наночастиц рассматривается как один из наибо-
лее перспективных подходов в повышении эф-
фективности лучевой и адронной терапии.

В рамках данной работы нами синтезированы
цитрат-стабилизированные наночастицы фтори-
да лютеция, а также проведен комплексный ана-
лиз их цитотоксичности и радиосенсибилизиру-
ющего действия in vitro на культуре клеток мела-
номы мыши.

МАТЕРИАЛЫ И МЕТОДЫ

Для синтеза золей наночатсиц LuF3 в качестве
исходных реагентов использовали Lu(NO3)3·6H2O
(Ланхит, 99.9%), HF (ос.ч., Сигма Тек), цитрат
аммония двузамещенный (х.ч., Sigma-Aldrich), изо-
пропанол (ос.ч., Химмед), этиленгликоль (х.ч., Sig-
ma Aldrich). Нитрат лютеция (2.345 г) растворяли
в 17 мл этиленгликоля при нагревании до 60°С и
интенсивном перемешивании на магнитной ме-
шалке. 0.885 мл HF (40% по массе) растворяли в
150 мл изопропанола. Полученный раствор при-
капывали к раствору нитратов РЗЭ при интенсив-
ном перемешивании, наблюдали формирование
суспензии. Осадок из суспензии отделяли филь-
трованием через бумажный фильтр (“Синяя лен-
та”), промывали изопропанолом, помещали в су-
шильный шкаф на 30–60 минут (50°С) для удале-
ния изопропанола и редиспергировали влажный
гелеобразный осадок в 100 мл деионизованной
воды. К полученной суспензии при интенсивном
перемешивании приливали раствор цитрата ам-
мония (1.134 г цитрата аммония в 100 мл деиони-
зованной воды). Полученный золь перемешивали
при 30–35°С до удаления изопропанола. Размер и
форму наночастиц определяли методом растро-
вой электронной микроскопии. Гидродинамиче-
ский диаметр и дзета-потенциал наночастиц опре-
деляли с помощью анализатора BetterSize Zeta 90.
УФ-спектр золя наночастиц анализировали на
спектрфотометре DS-11 FX+ (DeNoVix, США).
Рентгенофазовый анализ полученных порошков
осуществляли с помощью порошкового рентге-
новского дифрактометра Bruker D8 Advance (из-
лучение CuKα) в диапазоне углов (2θ) 20–90° с
шагом 0.02°, выдержкой 0.1 сек/шаг и накоплени-
ем в течение 40−60 минут. Анализ дифрактограмм
проводили с помощью базы данных ICDD PDF2
(2012). Оценку размеров областей когерентного
рассеяния (DОКР) проводили по формуле Шер-
рера, профили пиков аппроксимировали псевдо-
функциями Войта. Анализ цитотоксичности и
радиосенсибилизирующего действия проводили
с использованием клеток линии B16/F10 культи-
вировались в среде DMEM/F12 с добавлением
10% фетальной эмбриональной сыворотки. Куль-
тивирование производилось в 96-луночных план-
шетах в плотности (2.5–3.0) ⋅ 104 клеток/см2 для по-
следующей инкубации с образцами наночастиц

(1000, 500, 250 и 125 мкМ) в течение 24, 48 и 72 ч,
соответственно. Анализ цитотоксичности наноча-
стиц проводили с ипользованием метода МТТ те-
ста. После инкубации клеток с наночастицами сре-
да заменялась на раствор МТТ (3-(4,5-диметилти-
азол-2-ил)-2,5-дифенил-тетразолиум бромид) в
среде без сыворотки в концентрации 0.5 мг/мл.
Через 3 ч среда с МТТ заменялась на ДМСО,
планшеты помещались на шейкер на 10 мин, по-
сле чего измерялась оптическая плотность раство-
ров формазана в лунках планшетов при длине вол-
ны света 540 нм. Полученная оптическая плотность
прямо пропорционально связана с количеством
формазана, восстановленного из МТТ клеточными
NADPH-зависимыми окисдоредуктазами, и, таким
образом, косвенно коррелирует с метаболической
активностью и жизнеспособностью клеток. Вели-
чины оптической плотности пересчитывались в про-
центы от соответствующих значений контрольных
групп, отклонения в выборках указывались в виде
стандартного отклонения (SD). Значимость откло-
нений между выборками и контролем подтвержда-
лась с использованием t-критерия Уэлча при 0.01 <
p < 0.05 (*), 0.001 < p < 0.01 (**), 0.0001 < p < 0.001 (***)
и p < 0.0001 (****) с использованием GraphPad
Prism.

Анализ выживаемости клеток проводили ме-
тодом флуоресцентной микроскопии (Live Dead
тест) после инкубации клеток в присутствии об-
разцов наночастиц среда заменялась на раствор
смеси флуоресцентных красителей Hoechst 33342
(связывается с ДНК всех клеток, длина волны
возбуждения 350 нм, длина волны испускания
460 нм) и йодида пропидия (связывается с ДНК
только мертвых клеток, длина волны возбужде-
ния 535 нм, длина волны испускания 615 нм) в бу-
ферном растворе Хэнкса. Через 15 мин клетки про-
мывались однократно буферным раствором
Хэнкса, после чего проводилось их фотографиро-
вание на инвертированном флуоресцентном
микроскопе. С использованием программы Im-
ageJ велся подсчет количества мертвых и всех кле-
ток, затем составлялось их процентное соотно-
шение. Анализ мембранного митохондриального
потенциала (ММП): после инкубации клеток в
присутствии образцов среда заменялась на рас-
твор красителя TMRE (тетраметилродамин, эти-
ловый эфир; положительно заряженный, красно-
оранжевый краситель, связывается с активными
митохондриями из-за их относительно отрица-
тельного заряда, длина волны возбуждения
552 нм, длина волны испускания 574 нм) в буфер-
ном растворе Хэнкса, после чего проводилось их
микрофотографирование на флуоресцентном
микроскопе. С использованием программы Im-
ageJ производился подсчет интенсивности флуо-
ресценции. Величины интенсивности флуорес-
ценции пересчитывались в проценты от соответ-
ствующих значений контрольных групп,
отклонения в выборках указывались в виде стан-
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дартного отклонения (SD). Облучение клеток ме-
ланомы B16/F10 проводили на рентгеновском те-
рапевтическом аппарате РУТ-15 (“Мосрентген”,
Россия) в дозе 2 и 4 Гр при мощности дозы 1

Гр/мин., напряжении 200 кВ, токе 20мА и фокус-
ном расстоянии 37.5 см. Статистическая обработ-
ка данных выполнялась с использованием про-
граммы GraphPad Prism 8.0. Значимость отклоне-

Рис. 1. Схема синтеза LuF3 (а) и схематическое изображение структуры наночастиц LuF3 (б).
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ний между выборками и контролем
подтверждалась с использованием t-критерия
Уэлча при 0.01 < p < 0.05 (*), 0.001 < p < 0.01 (**),
0.0001 < p < 0.001 (***) и p < 0.0001 (****).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ 
И ИХ ОБСУЖДЕНИЕ

Был проведен комплексный анализ физико-
химических характеристик синтезированных

Рис. 3. МТТ-тест на клетках B16/F10 через 24, 48 и 72 ч инкубации клеток в присутствии наночастиц LuF3 в различных
концентрациях (а). Значения метаболической активности клеток указаны в процентах от контроля. Микрофотогра-
фии клеток, окрашенных красителями Hoechst (синий) и PI (красный) для проведения LD-теста (б). Анализ жизне-
способности клеток B16/F10 через 24, 48 и 72 ч инкубации клеток в присутствии наночастиц LuF3 в различных кон-
центрациях (125–1000 мкМ) (г). Значения указаны в процентном соотношении числа мертвых клеток к общему их ко-
личеству. Микрофотографии окрашенных клеток для TMRE-теста (в). Анализ митохондриального потенциала через
24, 48 и 72 ч инкубации клеток в присутствии наночастиц LuF3 в различных концентрациях (д). Значения интенсив-
ности флуоресценции клеток указаны в процентах от контроля.
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наночастиц широким спектром методов. Синтез
наночастиц фторида лютеция осуществляли гидро-
термальным способом через осаждение нитрата
лютеция с плавиковой кислотой в этиленгликоле
(рис. 1а, 1б).

В качестве биосовместимого стабилизатора был
использован цитрат аммония. Анализ размера на-
ночастиц методом растровой электронной микро-
скопии подтвердила высокую степень монодис-
персности и сферическую форму (около 20–50 нм)
(рис. 2а). Рефлексы на дифрактограмме образца
LuF3 (рис. 2б) соотносятся с рефлексами соедине-
ния (H3O)Yb3F10(H2O) (пространственная группа
Fd m, карточка PDF2 № 88-364). Карточка анало-
гичного соединения лютеция в базе данных от-
сутствует, однако, исходя из близости свойств ка-
тионов РЗЭ, а также близости радиусов Yb3+ и
Lu3+, можно предположить, что полученный оса-
док имеет схожую структуру и представляет собой
гидрат кислой фторидной соли лютеция. Значи-
тельное уширение рефлексов на дифрактограммах
осадков, полученных в ходе синтеза LuF3, свиде-
тельствует о малом размере частиц. Гидродинами-
ческий диаметр нанокомпозита при формирова-
нии суспензии в дистилированной воде составил
193 нм (рис. 2в). Дзета-потенциал нанокомпозита
–16 ± 1 мВ. УФ-видимый спектр наночастиц
LuF3 представлен на рис. 2г.

Цитотоксичность наночастиц LuF3, оценива-
ли путем анализа дегидрогеназной активности на
клетках мышиной меланомы B16/F10 (рис. 3а).
Показано, что наночастицы проявляют цитоток-
сичность при повышении концентрации. В тесте
жив/мертв наночастицы LuF3 не продемонстриро-
вали значимого влияния на выживаемость клеток
B16/F10 (рис. 3б, 3г). Также нами была проведена
оценка митохондриального мембранного потен-
циала (ММП). ММП использовали в качестве на-
дежного маркера окислительно-восстановительно-
го статуса клеток и их метаболической активности.

3

Эксперименты показали, что культивирование кле-
ток с наночастицами во всем диапазоне концентра-
ций приводил к снижению их ММП после 24, 48
и 72 ч культивирования (рис. 4в, 4д), что говорит
о снижение метаболической активности клеток
при повышении концентрации наночастиц в сре-
де.

Окраска потенциал-чувствительным красите-
лем TMRE показала, что присутствие наночастиц
в концентрации 58 мкг/мл вызывает повышение
значений ММП в группе, не подвергавшейся об-
лучению и в группе подвергавшейся облучению в
2 Гр, но при концентрации LuF3 116 мкг/мл зна-
чения ММП в этих группах относительно кон-
троля снижается. Однако в группе, которая под-
верглась действию ионизирующего излучения в
4 Гр значения ММП снижаются при всех концен-
трациях наночастиц (рис. 4). Таким образом
клетки меланомы после облучения, которые
предварительно сокультивировались с наночасти-
цами LuF3, обладают меньшей пролиферативной
активностью и мембранным митохондриальным
потенциалом по сравнению с клетками без нано-
частиц, что свидетельствует о радиосенсибилизи-
рующем эффекте.

ЗАКЛЮЧЕНИЕ

Синтезирован и охарактеризован новый тип
цитрат-стабилизированных наночастиц LuF3, пер-
спективный в качестве нанорадиосенсибилизато-
ра. Полученный золь наночастиц обладает высо-
кой степенью монодисперсности и коллоидной
стабильности. Наночастицы LuF3 проявляет ци-
тотоксический эффект по отношению к клеткам
меланомы мыши линии B16/F10 в концентраци-
ях от 116 мг/мл и выше, через снижение ММП и
запуск процесса апоптоза. Разработанные нано-
частицы могут лечь в основу при разработке эф-
фективного тераностического агента для терапии
онкологических заболеваний в рамках курса лу-
чевой и адронной терапии.
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Lutetium Fluoride (LuF3) Nanoparticles 
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Abstract—Results are presented from studying physicochemical characteristics and radiosensitizing proper-
ties of a new type of lutetium fluoride (LuF3) nanoparticle as a promising nanoradiosensitizer for X-ray irra-
diation of B16/F10 melanoma cells. A comprehensive analysis is performed of functional characteristics of
synthesized LuF3 nanoparticles, their cytotoxicity, and their radiosensitizing effect in vitro. It is shown that
LuF3 nanoparticles have a hydrodynamic diameter of less than 200 nm. Colloidal sol obtained on their basis
is highly stable as a result of using the biocompatible stabilizer ammonium citrate. LuF3 nanoparticles have a
cytotoxic and radiosensitizing effect on melanoma cells in concentrations of 116 mg/mL and higher by reduc-
ing their metabolic activity and membrane mitochondrial potential while initiating apoptosis. Such nanoma-
terial can form the basis of promising modern approaches to increasing the effectiveness of radiation therapy.
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