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В работе рассматривается использование скачкообразного прохождения критической энергии для
обеспечения стабильности пучка в коллайдере NICA. Описываются особенности барьерной и гар-
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ВВЕДЕНИЕ

Проблема прохождения критической энергии
в синхротроне NICA (ОИЯИ г. Дубна) актуальна
для экспериментов с протонами при энергии пуч-
ка 13 ГэВ, поскольку может приводить к росту
эмиттанса и в конечном счете накладывает огра-
ничения на конечную светимость. Для экспери-
ментов с тяжелыми ионами при энергии 4.5 ГэВ
такой сложности не возникает, так как критиче-
ская энергия составляет 5.7 ГэВ.

Реализация скачкообразного прохождения кри-
тической энергии в NICA со сдвигом бетатронной
частоты ограничивает величину скачка. Ограни-
ченный темп изменения градиентов квадруполей
влечет ограниченный темп изменения критиче-
ской энергии. Подобная схема скачка рассмотре-
на для отличных по своему принципу работы
ускоряющих ВЧ станций: барьерной и гармони-
ческой. Кроме того, проведено сравнение с мето-
дикой прохождения критической энергии скач-
ком на У-70 (ИФВЭ, г. Протвино).

СВЕТИМОСТЬ

Для коллайдерного эксперимента светимость
является ключевой величиной. В простейшем слу-
чае – столкновение симметричных сгустков –
светимость дается формулой [1]:

(1)

где  – количество сгустков,  – количе-
ство частиц в сталкивающихся сгустках,  –
продольные эмиттансы,  – частота обращения,

 – параметр песочных часов,  – гауссов па-
раметр продольного размера,  – бета-функция в
точке столкновения. Как видно, данная формула
отражает принципиальную зависимость от множе-
ства параметров как пучка, так и магнитооптики.

Прохождение через критическую энергию ока-
зывает существенное влияние на продольную ди-
намику. Светимость явно зависит от продольной
длины пучка только в параметре песочных часов.

,  , то
есть при неизменных параметрах и увеличении
только длины сгустка в два раза, влияние эффекта
песочных часов уменьшит исходную светимость
на 30% . Для NICA предполагается до-
стичь  , бета-функция в точке
встречи . Таким образом учтена только
явная зависимость от продольной длины. Неявно,
светимость зависит от продольного эмиттанса
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сгустка, так как накладывает ограничение на коли-
чество частиц.

УСКОРЕНИЕ

Рассмотрим эволюцию продольного эмиттанса в
процессе ускорения в барьерном ВЧ. Для достиже-
ния светимости порядка , конечный
среднеквадратичный нормализованный про-
дольный эмиттанс сгустка равен ·
·  (   σs =

 ) при энергии порядка
13 ГэВ. Формируется из эмиттанса равномер-
ного сгустка в барьерном ВЧ , разделенного
на 22 сгустка  при помощи ВЧ гим-
настики. Эмиттанс барьерного ВЧ подвержен влия-
нию критической энергии на эмиттанс охлажден-
ного пучка после инжекции , .
Охлажденный пучок формируется после инжек-
ции, накопления и электронного охлаждения на
2–3 ГэВ . Только охлаждение умень-
шает эмиттанс , остальные эффекты, толь-
ко раздувают эмиттанс , . Для гим-
настики было принято , влияние  бу-
дет обсуждено далее.

СКАЧОК КРИТИЧЕСКОЙ ЭНЕРГИИ

Метод скачка критической энергии применя-
ется для сохранения фазового объема при перехо-
де через критическую энергию. В NICA рассматри-
вается скачок критической энергии за счет сдвига
бетатронных частот. Параметры скачка могут быть
определены при рассмотрении магнитооптиче-

32 2 12 10 см с  − −⋅
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ской структуры и возможностью изменения тока
в квадрупольных линзах в поворотных арках.

Изменение критической энергии достигается пу-
тем изменения коэффициента расширения орбиты

(2)

где  – дисперсионная функция,  – кривиз-
на орбиты. При этом необходима модуляция дис-
персионной функции. Магнитооптическая струк-
тура поворотных арок NICA состоит из 12 ФОДО
ячеек с подавленной на краях дисперсией (рис. 1а).
С помощью программ для численного моделиро-
вания движения пучка в магнитных системах
ускорителей MADX [2] и OptiM [3] изучена зави-
симость изменения критической энергии от ча-
стоты бетатронных колебаний, при этом изме-
нялся градиент в фокусирующих квадрупольных
линзах. Именно в этих элементах расположен мак-
симум  и . В имеющейся структуре 
(рис. 1б). Для обеспечения скачка порядка

 потребуется изменять частоту в преде-
лах . Соответствующее суммарное из-
менение градиента , где

 – средняя бета-функция. Тогда макси-
мальное изменение градиента в одном квадруполе

, где  – ко-
личество фокусирующих линз,  – маг-
нитная жесткость при кинетической энергии про-
тонов 5.7 ГэВ (критическая энергия),  –
длина квадруполя. При этом ограничение скорости
нарастания тока приводит к ограничению в измене-
нии градиента квадрупольных линз. Темп измене-
ния критической энергии  [4].

( )
( )

С

0

1 ,
D s

ds
C s

α =
ρ

( )D s ( )sρ

xβ xD trΔ 1.1Δqγ =

trΔ 0.09γ =
Δ 0.05q± =

14 / 0.055  мaKl q −Δ = πΔ β =
11.5 мaβ =

( )F/ 0.5  Тл/мG Kl BR N lΔ = Δ = F 24N =
22 Тл мBR =

0.47 мl =

1
tr / 8.5  cd dt −γ =

Рис. 1. (а) Твисс-параметры  поворотной арки NICA; (б) зависимость бетатронной частоты в x, y – плоскости от
 при модуляции дисперсионной функции изменением градиента в фокусирующих линзах.
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В протонном синхротроне НИЦ “Курчатовский
институт” – ИФВЭ У-70 также используется мето-
дика скачка критической энергии [5]. Магнитооп-
тическая структура У-70 является ФОДО-перио-
дичной и состоит из 12 суперпериодов с 10 маг-
нитными блоками с совмещенной функцией [6].
Ускорение осуществляется гармоническим ВЧ с

темпом . Скачок достигается
также искажением дисперсионной функции, од-
нако без смещения рабочей точки. Дополнитель-
ные квадруполи, расположенные через полпериода

, которые имеют противоположные
полярности, модулируют дисперсионную функ-
цию. Изменение критической энергии происходит

на  (рис. 2а) за 1 мс, то есть в 10 раз боль-

ше и в 100 раз быстрее , по
сравнению с упомянутым скачком для NICA. Также

показано соответствующее изменение 

(рис. 2б), где  – Лоренц-фактор пучка [7].

Темп ускорения непосредственно влияет на ди-
намику продольного движения. В NICA имеется
три различные ВЧ станции: ВЧ-1 – барьерное,
четыре ВЧ-2, восемь ВЧ-3 – гармонические с гар-
моническим числом 22 и 66 соответственно. Мак-
симальное суммарное напряжение составляет по-

рядка ,  и
значительно больше, чем для индунционного уско-

рения в барьерном  [8].

( ) 1
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( ) 1
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( ) 1
RF2/ 30 cd dt −γ = ( ) 1

RF3/ 300  cd dt −γ =

( ) 1
RF1/ 0.2  cd dt −γ =

ГАРМОНИЧЕСКОЕ ВЧ
Ускорение в гармоническом ВЧ-резонаторе

достигается путем смещения фазы пучка относи-
тельно фазы ВЧ. Темп ускорения в гармониче-
ском ВЧ-2  больше максималь-
ного темпа изменения критической энергии

. На рис. 3а показана схема сим-
метричного скачка от  до .
При этом предварительное увеличение критиче-
ской энергии и соответствующее восстановление
до стационарного значения может происходить не с
максимальным темпом изменения критической
энергии, а медленнее. Таким образом, время на-
хождения вблизи нулевого значения  сокраща-
ется. По сравнению со случаем скачка для У-70,
коэффициент проскальзывания за время скачка
изменяется медленно (рис. 3б). Долгое прибыва-
ние вблизи около нулевого значения  является
опасным для продольной динамики пучка. Именно
поэтому и применяется процедура скачка (быстро-
го пересечения) критической энергии. В данном
случае из-за ограниченной величины самого
скачка , а также ограниченного темпа
изменения критической энергии ,
сам скачок оказывается незначительным.

БАРЬЕРНОЕ ВЧ
Барьерное ВЧ-1 генерирует барьерные импуль-

сы 5 кВ для удержания пучка, ускорение достигает-
ся индукционно, меандром с напряжением 300 В
[8]. Темп ускорения  значи-
тельно ниже по сравнению с гармоническим

( ) 1
RF2/ 30  cd dt −γ =

1
tr / 8.5  cd dt −γ =

tr tr /2γ + Δγ tr tr /2γ − Δγ

η

η

tr 0.09Δγ =
1
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( ) 1
RF1/ 0.2 cd dt −γ =

Рис. 2. (a) Принципиальная схема поднятия критической энергии на У-70 при процедуре скачка на  с тем-

пом ; (б) соответствующее изменение первого порядка коэффициента скольжения .
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(рис. 4а). Скачок происходит за тоже время (10 мс),
что и для случая гармонического ВЧ. Продольная
динамика в таком ВЧ отличается от случая гармо-
нического. При этом достигает малого значения

 и удерживается вблизи малого зна-
чения, в этом случае нелинейность ,
сказывается на частицах с большим . Однако,
для барьерного ВЧ это не опасно, так как нет до-
полнительного возбуждения, которое может вы-
толкнуть частицы вне сепаратрисы и может только

4
0 2.5 10−η = − ⋅

0 1η = η + η δ
δ

исказить распределение между барьерами. Про-
филь пучка имеет ненулевой градиент только по
краям, где частицы отражаются от барьера. После
поднятия критической энергии происходит ска-
чок критической энергии за 10 мс в отсутствие ба-
рьеров. За это время фазовый портрет изменяется
незначительного. А затем, захватывается барьера-
ми с обратной полярностью.

Главным остается то, что ограничены 1) воз-
можная величина скачка ; 2) темп изме-tr 0.09Δγ =

Рис. 3. (a) Принципиальная схема поднятия критической энергии на NICA в гармоническом ВЧ с темпом

 при процедуре скачка на  с темпом ; (б) соответствующее изменение

первого порядка коэффициента скольжения .
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нения критической энергии . Огра-
ничение на величину скачка приводит к ограниче-
нию на скачок коэффициента проскальзывания

. Барьерное ВЧ подразумевает от-
носительно долгое удержание пучка в окрестно-
сти около нулевого значения  (рис. 4б).

ПРОДОЛЬНАЯ МИКРОВОЛНОВАЯ 
НЕУСТОЙЧИВОСТЬ

Ограничение на порог микроволновой неустой-
чивости зависит от многих параметров и для равно-
мерного распределения, характерного именно ба-
рьерному ВЧ определяется критерием Кейл–
Шнель. В модифицированном виде этот крите-
рий приведен в [9].

(3)

Ток  тут  – длина пучка или для

барьерного ВЧ это эквивалентно расстоянию
между удерживающими барьерами (приближено,
без учетов краевых эффектов). Отсюда видно, что
возникает ограничение на количество частиц 
(  для протонов)

(4)

или, если учесть, что нормализованный эмиттанс
для барьерного ВЧ  (  так как
распределение по импульсам имеет гауссов вид, а
продольный размер – равномерный), то справед-
ливо для барьерного ВЧ

Таким образом при нахождении вблизи ма-
лого значения  количество частиц, ограниче-
но длиной сгустка в барьерном ВЧ. При этом
нормализованный эмиттанс определяется из
необходимости иметь достаточную светимость

. А длина сгустка мо-
жет быть варьирована движением барьеров.

Требуемое количество частиц для достижения
светимости порядка  – 
для конечного сгустка, таким образом требуе-
мое количество частиц в барьерном ВЧ как мини-
мум должно быть . Для упомянутого скачка,
энергия  , 

вблизи  для расчетов принято
, , 

1
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Эта зависимость представлена на рис. 5. Таким
образом ограничение для длины пучка 

ограничение на количество частиц ,

для , .

Исходя из этих оценок, достичь конечного числа
частиц для каждого из 22 сгустков,
представляется трудной задачей, вследствие воз-
никновения продольной микроволновой неустой-
чивости вблизи критической энергии для интен-
сивного равномерного сгустка в барьерном ВЧ.

ЗАКЛЮЧЕНИЕ

В первую очередь коллайдерные эксперимен-
ты предъявляют требования к светимости. Которые
дают ограничения, помимо прочего, и на продоль-
ный фазовый размер конченого сгустка. При уско-
рении, необходимо как преодолеть критическую
энергию, так и разделить пучок на 22 сгустка при
помощи ВЧ гимнастики, при этом не раздуть фа-
зовый объем.

Рассмотрена возможная схема скачка крити-
ческой энергии для NICA. Характерные величи-
нами являются, величина скачка  и темп
изменения критической энергии .
Для гармонического ВЧ предложенный скачок
оказывает малое влияние на продольную динами-
ку в силу малости скачка и его низкого темпа по
сравнению с темпом ускорения. Для барьерного
ВЧ, ограничение на величину скачка дает порого-
вое значение количества частиц в равномерном
сгустке, вследствие микроволновой неустойчи-
вости. И не позволяет достигнуть количества ча-
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Рис. 5. Зависимость количества частиц в барьерном
ВЧ и разброса по импульсам от длины между удержи-
вающими барьерами с точки зрения продольной мик-
роволновой неустойчивости.
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стиц  в конечном сгустке для достижения
максимальной светимости.
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Abstract—The paper considers the use of the transition energy jump to ensure the stability of the beam in the
NICA collider. The features of barrier and harmonic accelerating RF stations and their influence on the dy-
namics of the particles longitudinal motion are described. The study of these features is intended to expand
the understanding of the transition energy crossing process.
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