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Методом Монте-Карло для вихревой системы выполнен расчет отклика слоистого высокотемпера-
турного сверхпроводника, содержащий радиационные центры пиннинга, на токовый импульс мик-
росекундной длительности. Проанализированы две различные формы импульса: прямоугольный и
треугольный импульс. Показано, что форма отклика приближенно совпадает с формой исходного
импульса. Исследован эффект “эха”, наблюдаемый во внешнем магнитном поле после выключения
внешнего тока. Показано, что увеличение эффективности пиннига радиационными дефектами
оказывает влияние на проявление эффекта, при этом интенсивность “эха” уменьшается.
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1. ВВЕДЕНИЕ

Одним из важнейших параметров сверхпро-
водника является величина критического тока.
Измерению величины критического тока и опре-
делению его зависимости от различных парамет-
ров образца и условий эксперимента посвящено
множество работ [1–4]. При не слишком высоких
магнитных полях и температурах величина кри-
тического тока определяется из вольт-амперной
характеристики по критерию 1 мкВ/см [5]. Изме-
рением вольт-амперной характеристики опреде-
ляют экспериментально критический ток для джо-
зефсоновских переходов [6], гранулированных
сверхпроводников [7], сверхпроводящих микромо-
стиков при низких температурах и в малых маг-
нитных полях [8]. Однако, при температурах выше
температуры жидкого азота медленное наращива-
ние тока, необходимое для получения вольт-ам-
перной характеристики, невозможно, т. к. приво-
дит к нагреву образца на несколько градусов
Кельвина. Чтобы преодолеть данную трудность,
авторами работы [9] разработан метод импульс-
ного воздействия квазипостоянного тока, при ко-
тором ток через образец последовательно увели-
чивается и уменьшается; такой метод позволяет
получить вольт-амперную характеристику. В работе

[10] вольт-амперная характеристика в сильных
магнитных полях (более 100 Тл) измерена мето-
дом импульсного воздействия поля и тока. В ра-
боте [11] импульсный ток применялся для умень-
шения тепловыделения в сильных магнитных по-
лях. Широкое применение на практике находит
также импульсное воздействие магнитного поля
[12–16]. Импульсное намагничивание применяет-
ся для создания сверхпроводящих квазипостоян-
ных магнитов. В работе [16] показано, что опти-
мальной для намагничивания является последова-
тельность из 3 импульсов. Распространенным
способом создания центров пиннинга является об-
лучение образца заряженными частицами: элек-
тронами или ионами различной энергии [17–19].
В результате облучения образуются колончатые
дефекты, обеспечивающие эффективный пин-
нинг. Необходимы методы, позволяющие про-
анализировать влияние облучения на магнитные
и транспортные свойства образца. Одним из ме-
тодов является численное моделирование. Таким
образом, импульсное воздействие тока и магнит-
ного поля на образец представляет существенный
научный и практический интерес. Необходимо
проводить исследования также при различной
конфигурации центров пиннинга, поскольку
данный параметр определяет величину критиче-
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ского тока. Следует отметить также, что в работах
[10, 11] применялся прямоугольный импульс. Од-
нако, может представлять интерес исследовать и
другие формы импульса. В общем случае произ-
вольной конфигурации центров пиннинга и фор-
мы импульса задача становится трудноосуще-
ствимой как в эксперименте, так и для аналити-
ческого решения. Целью представляемой работы
является исследование импульсного воздействия
тока в постоянном магнитном поле на сверхпровод-
ник с центрами пиннинга. Рассмотрены дефекты
различной эффективной глубины, которые могут
быть получены в результате облучения электро-
нами или ионами высокой энергии. В статье про-
ведены тестовые расчеты, определяющие, как
сверхпроводник, подвергающийся облучению раз-
личными заряженными частицами, откликается
на токовый импульс. Исследовался прямоуголь-
ный и треугольный токовый импульс. Расчеты
выполнены при различной эффективной глубине
центров пиннинга в образце. Как показывают более
ранние расчеты, при повышении эффективной глу-
бины дефектов повышается величина критическо-
го тока образца.

2. МЕТОД РАСЧЕТА

Моделирование вихревой системы в слоистом
высокотемпературном сверхпроводнике (ВТСП)
выполнено методом Монте-Карло (МК). ВТСП
на основе иттрия и висмута, наиболее часто при-
меняемые на практике, могут быть описаны в
рамках модели Лоренса−Дониака [20]. Вихревая
нить в данной модели может быть представлена в
виде стопки взаимодействующих слоевых вихрей –
панкейков, связанных межплоскостным электро-
магнитным и джозефсоновским взаимодействием.
Для ВТСП на основе иттрия джозефсоновская
связь оказывается настолько сильной, что сред-
нике тепловые отклонения панкейков от оси вих-
ря не превышают нескольких  (длина когерент-
ности сверхпроводника). В этом случае допусти-
мо выполнить описание вихревой системы в
рамках двумерной модели и рассматривать один
ВТСП-слой как средний отклик всего образца.
Энергия такой двумерной системы панкейков,
минимизируемая в процессе расчета Монте-Кар-
ло, может быть записана в виде

(1)

где  – собственная
энергия вихря, приходящаяся на один сверхпрово-
дящий слой толщиной d,   – глубина про-
никновения и длина когерентности при ;
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слагаемое определяет собственную энергию вих-
рей, вошедших в образец. Описание модели при-
водится также в более ранних работах [21–23]. Вто-
рое слагаемое описывает попарное взаимодействие
между вихрями, третье слагаемое соответствует вза-
имодействию вихрей с центрами пиннинга, чет-
вертое и пятое слагаемые – взаимодействие вихря с
границей, мейсснеровским и транспортным током.

В работе рассчитывается напряженность элек-
трического поля E, возникающего в образце при
протекании транспортного тока. Метод Монте-
Карло позволяет также рассчитать зависимость
напряженности от времени  при воздействии
импульсов тока на образец. Собственное поле
транспортного тока приводит к рождению вихрей
противоположного знака на границах образца.
Если сила Лоренца превышает силу пиннинга,
вихри начинают движение к центру образца с по-
следующей аннигиляцией. Напряженность элек-
трического поля в образце рассчитывается по
формуле ,  – средняя скорость течения
вихрей, B – магнитное поле в образце, обуслов-
ленное вихрями,  (S – площадь образца,
n – число вихрей). В работе рассмотрено воздей-
ствие на сверхпроводник импульсов прямоуголь-
ной и треугольной формы. Длительность прямо-
угольного импульса составляет  МК шагов, что,
согласно нашим оценкам [22, 23], соответствует
примерно 100 мкс. Для обеспечения реалистич-
ности модели примем, что импульс имеет конеч-
ную длительность переднего и заднего фронта,
при этом ток нарастает и спадает по линейному
закону. Время нарастания тока принято равным
200 шагов МК (2 мкс). Длительность переднего и
заднего фронта треугольного импульса составля-
ет 5000 МК шагов. Воздействуя токовыми им-
пульсами на образец, находящийся в постоянном
магнитном поле, можно ожидать получения новых
эффектов. Во внешнем магнитном поле симметрия
в распределении вихрей относительно центра об-
разца нарушается. Электрическое поле рассчита-
ем в этом случае по формуле

(2)

где ,  – площади, занятые вихрями и антивих-
рями соответственно,  и  – количества вихрей
и антивихрей в образце.

Дефекты сверхпроводника – центры пиннин-
га вихрей – вводятся в расчет в виде локальной
потенциальной ямы; глубина ямы – важный па-
раметр, зависящий от природы дефекта и характе-
ризующий его эффективность. Радиус потенциаль-
ной ямы по величине близок к длине когерентности
сверхпроводника ; именно такой размер дефектов
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обеспечивает наиболее эффективный пиннинг. В
работе рассмотрен пиннинг вихрей на слабых
собственных дефектах образца; такими дефекта-
ми могут служить дефекты кристаллической решет-
ки. Средняя эффективная глубина такого дефекта
принята равной  эВ на один ВТСП-слой.
Также рассмотрен случай, когда глубина дефек-
тов превышает указанное значение на 1 или 2 по-
рядка. Такая глубина соответствует искусствен-
ным центрам пиннинга, получаемым, например,
облучением образца электронами и ионами высо-
кой энергии, соответственно. Размер образца в
плоскости сверхпроводящих слоев составляет

 мкм. Параметры сверхпроводника, исполь-
зованные при моделировании, имеют следующие
значения:  нм,  = 2 нм. Выбор раз-
мера связан с ограничением по быстродействию
и оперативной памяти компьютера. Полученные
результаты могут быть полезны при интерпрета-
ции экспериментальных данных, полученных на
сверхпроводящих мостиках микронного и суб-
микронного размера.

3. ОТКЛИК НА ТОКОВЫЙ ИМПУЛЬС: 
ЗАВИСИМОСТИ НАПРЯЖЕННОСТИ 

НА ОБРАЗЦЕ ОТ ВРЕМЕНИ

В данной статье представлены результаты рас-
чета отклика образца на токовый импульс прямо-
угольной и треугольной формы. На рис. 1 показан
рассчитанный отклик образца на прямоугольный
импульс при двух значениях амплитуды тока в
импульсе. Образец в данном расчете имеет только
собственные слабые центры пиннинга. В случае
слабого пиннинга величина плотности критическо-
го тока оказывается для образца выбранного разме-

4 310 10− −−

6 6×

(0) 180λ = (0)ξ

ра равной  A/см , что соответствует маг-
нитному полю на границах образца HI = 400 Гс (по-
ле перегрева мейсснеровского состояния).
Внешнее магнитное поле составляет 250 Гс, что
меньше величины первого критического поля. При
выбранных размерах образца выбранное значение
магнитного поля имеет тот же порядок, что и соб-
ственное поле транспортного тока. Величина HI со-
ответствует собственному полю тока, протекающе-
му через образец. HI = 1000 Гс на границе образца

создается током плотности  A/см ,
HI = 700 Гс, соответственно, отвечает плотности

тока  A/см .

Из рис. 1 видно, что при HI = 1000 Гс форма от-
клика приближенно остается прямоугольной, дли-
тельность переднего фронта не превышает  МК
шагов. Длительность переднего фронта не зависит
от амплитуды тока в импульсе при рассмотренных
ее значениях. Параметр  на рис. 1 соответствует
средней эффективной глубине центров пиннинга
и равен  эВ на сверхпроводящий слой. При
глубине дефектов  видно “эхо” – эффект появ-
ления ненулевого напряжения после окончания
действия импульса. Длительность эффекта со-
ставляет примерно 500 МК шагов. Максимальное
значение напряженности, достигаемое в течение
“эха”, порядка нескольких микровольт на
сантиметр. В расчете также исследовано влияние
эффективной глубины потенциальной ямы цен-
тра пиннинга на форму зависимости ). Усиле-
ние пиннинга, как показывает расчет, влияет как
на величину основного отклика, так и на “эхо”.
Амплитуда зависимости  практически не ме-

6= 1.2 10j ⋅ 2
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6= 2.1 10j ⋅ 2

310
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410−
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Рис. 1. Отклик сверхпроводника на прямоугольный токовый импульс при двух значениях амплитуды тока в импульсе.
Зависимости  получены при разной эффективной глубине потенциальной ямы  дефектов. HI соответствует соб-
ственному магнитному полю тока в импульсе на границе образца. Внешнее поле  Гс
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Рис. 2. Отклик образца на импульс тока треугольной формы: T = 4.2 K.
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Рис. 3. Отклики на треугольный токовый импульс при Т = 20 К и различной амплитуде тока в импульсе. Эффективная
глубина потенциальной ямы дефекта равна ~0. Черная линия схематично показывает форму импульса.

20

–5

10

30

0

0 5000 10 000 15 000 20 000 25 000 30 000

25

15

5

E
(t

),
 м

кВ
/с

м E(t), HI = 400 Гс
E(t), HI = 500 Гс
E(t), HI = 750 Гс
E(t), HI = 800 Гс

t, МК шаги

T = 20 K

H = 300 Гс

0
I(t)

80

40

–10

20

60

0

100

0 5000 10000 15 000 20 000 25 000 30 000

90

50

30

70

10

E
(t

),
 м

кВ
/с

м
 

t, МК шаги

H = 300 Гс

E(t), HI = 1000 Гс
E(t), HI = 1200 Гс
E(t), HI = 1500 Гс
E(t), HI = 2000 Гс

0
T = 20 K

I(t)

няется при увеличении глубины дефекта в 5–10
раз, уменьшается при . “Эхо” с ростом
эффективности пиннинга становится менее вы-
раженным и при  исчезает полностью.

Далее было проанализировано воздействие на
образец импульса треугольной формы. Расчеты
выполнены для нескольких значений амплитуды
тока в импульсе и при трех значениях температу-
ры. Амплитудой для треугольного импульса на-
зывается максимальное значение, достигаемое в
течение импульса. Для внешнего магнитного по-
ля выбрано значение 300 Гс; как показали предва-
рительные расчеты, при этом значении наиболее
заметно проявляется эффект “эха” в случае пря-
моугольного импульса. Результаты расчета для T =
4.2 K показаны на рис. 2. Амплитуда тока в им-
пульсе изменялась от  A/см  (что при
слабом пиннинге соответствует критической

020α = α

0αα

6= 1.2 10j ⋅ 2

плотности тока) до  A/см . Форма им-
пульса показана схематично на рис. 3. Форма от-
клика остается приближенно треугольной, одна-
ко, следует отметить наличие на зависимости 
участка с другим наклоном. На начальном участке
на границе образца не сразу достигается поле про-
никновения вихрей в сверхпроводник  = 400 Гс.
“Эхо” проявляется при высоком значении тока в
импульсе и сохраняется при увеличении темпера-
туры до 60 К (рис. 4).

Эффективность пиннинга, как показывает рас-
чет, влияет на величину напряженности  и
практически не влияет на форму импульса. На
рис. 5 показаны зависимости , полученные
при различной величине . Рассмотрены также
модельные случаи  и , что со-
ответствует эффективной глубине дефекта 0.1 эВ
на один ВТСП-слой. Видно, что увеличение эф-

6= 6 10j ⋅ 2

( )E t

1cH

( )E t

( )E t
α

0100α = α 0200α = α
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фективной глубины на порядок при рассмотрен-
ной амплитуде тока в импульсе не влияет на вели-
чину напряженности в основном отклике, но эф-
фект “эха” полностью пропадает. При дальнейшем
увеличении глубины дефектов форма отклика
остается треугольной, однако величина напря-
женности уменьшается.

4. ЗАКЛЮЧЕНИЕ
Методом Монте-Карло в рамках двумерной мо-

дели слоистого ВТСП исследована зависимость от
времени напряженности электрического поля в
образце сверхпроводника при импульсном воз-

действии тока, превышающего критический. Ис-
следована прямоугольная и треугольная форма
токового импульса. Показано, что форма отклика
при слабом пиннинге практически повторяет фор-
му импульса, амплитуда отклика уменьшается с
ростом эффективности центров пиннинга. При
слабом собственном пиннинге наблюдается эф-
фект “эха” после снятия импульса. Эффект со-
храняется при повышении температуры, но осла-
бевает при усилении пиннинга. Эффект наблю-
дается как для прямоугольной, так и для
треугольной формы импульса. Таким образом,
при введении эффективных радиационных де-
фектов уменьшается величина отклика образца

Рис. 4. Отклики на треугольный токовый импульс при Т = 60 К и различной амплитуде тока в импульсе. Эффективная
глубина потенциальной ямы дефекта равна .
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на импульсы рассмотренной формы, также облу-
чение образца ослабляет эффекты, наблюдаемые
после снятия импульса.
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Abstract—The Monte-Carlo method for a vortex system is used to calculate the response of a layered high-
temperature superconductor containing irradiation pinning centers to a current pulse of microsecond dura-
tion. Two different pulse shapes are analyzed: a rectangular and a triangular pulse. It is shown that the shape
of the response approximately coincides with the shape of the initial pulse. The “echo” effect observed in an
external magnetic field after switching off the external current is investigated. It is shown that the effect is ob-
served for both rectangular and triangular pulses, the severity of the effect decreases with increasing efficiency
of pinning centers in the sample.

Keywords: high-temperature superconductor, critical current, pinning, Abrikosov vortices
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