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Исследовано влияние ультрамелкозернистой структуры вольфрама со средним размером зерен 300
нм на образование блистеров на поверхности при высокодозном облучении ионами He+ с энергией
30 кэВ. Для сравнительных исследований использовали мелкозернистый вольфрам. Исследована
микроструктура и морфология поверхности образцов.
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ВВЕДЕНИЕ
Вольфрам, благодаря уникальному сочета-

нию свойств: высокой температуре плавления
(3695 K), теплопроводности (174 Вт/м ⋅ К), низ-
кому коэффициенту линейного теплового рас-
ширения (4.5 ⋅ 106 K–1), является перспективным
материалом для обращенных к плазме стенок в тер-
моядерном реакторе. В реакторе вольфрамовые
стенки будут подвергаться высокодозному об-
лучению ионами He+, изотопами водорода. Экспе-
риментальные исследования показывают, что в ре-
зультате облучения ионами He+ на поверхности
вольфрама образуются блистеры, нанопух [1–3].
Формирование этих структур на поверхности край-
не вредно, т. к., они могут отслаиваться и загряз-
нять высокотемпературную плазму, охлаждать ее.
Кроме этого, нанопух может увеличивать захват
изотопов водорода [4].

Одним из возможных способов для предотвра-
щения образования блистеров на поверхности
может явиться формирование ультрамелкозерни-
стой структуры (размер зерна менее 1 мкм) в объ-
еме вольфрама путем интенсивной пластической
деформации [5, 6]. Такое предположение основа-
но на том, что границы зерен могут являться сто-
ками для дефектов, сформированных под дей-

ствием облучения ионами гелия. В [7] было пред-
положено, что миграция междоузлий, вакансий и
даже пузырьков гелия к границам зерен может су-
щественно изменить поведение повреждений в
вольфраме. В [8, 9] установлено, что при темпера-
туре около 1223 K границы зерен способны удер-
живать гелий из-за повышения мобильности ва-
кансий. Кроме этого, показано, что на границе зер-
на формируются более крупные блистеры по
сравнению с телом зерна. В [10] исследовано влия-
ние ультрамелкозернистой структуры в вольфраме,
полученной интенсивной пластической деформа-
цией методом кручения под высоким давлением, на
образование блистеров при облучении ионами He+

с энергией 30 кэВ в гелиевом микроскопе. Отмеча-
ется, что на крупнозернистом образце блистеры об-
разуются уже при флюенсе 1017 ион/см2, в то время
как на ультрамелкозернистом образце блистеры от-
сутствовали даже при флюенсе 1019 ион/см2. В [11]
получены несколько другие результаты. По срав-
нению с [10] ультрамелкозернистые образцы бы-
ли получены так же интенсивной пластической де-
формацией методом кручения под высоким давле-
нием, но из порошка вольфрама. На облучаемом
участке поверхности ультрамелкозернистого образ-
ца наблюдались локальные вздутия/распухание
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(свеллинг). Высота вздутий (около 50 нм) при флю-
енсе облучения 1018 ион/см2 была сопоставима с вы-
сотой вздутий на монокристалле вольфрама [12].

В настоящей работе в сравнительных экспери-
ментальных исследованиях по влиянию ультра-
мелкозернистой структуры в вольфраме на обра-
зование блистеров при облучении ионами He+ с
энергией 30 кэВ использовали мелкозернистые об-
разцы, полученные отжигом ультрамелкозерни-
стых образцов. Площадь единовременного облу-
чения ионами He+ не ограничивалась микрометро-
выми растрами облучений, как в гелиевых ионных
микроскопах в [10, 11], а была на несколько поряд-
ков больше сечения облучаемых зерен в образцах.

МЕТОДИКА ЭКСПЕРИМЕНТА
Материалом для исследований выбрали воль-

фрам марки ВА чистотой 99.93%. Исходным об-
разцом являлся слиток, полученный аргонно-ду-
говой плавкой. Размер зерна в слитке достигал 1 мм.
Из слитка вырезали образцы диаметром 10 мм,
толщиной 1 мм. С целью формирования ультра-
мелкозернистой структуры использовали интен-
сивную пластическую деформацию [13, 14]. Де-
формацию образцов осуществляли методом кру-
чения под высоким давлением на наковальнях
Бриджмена с плоскими поверхностями при уси-
лии гидравлического пресса 50 т при комнатной
температуре [15, 16]. Давление составило около
6 ГПа. Число оборотов задавали равным 6. В ре-
зультате деформации были получены дисковые
образцы диаметром 10 мм, толщиной менее 1 мм.

Для аттестации микроструктуры и последую-
щих экспериментов образцы подвергали механи-
ческой шлифовке и полировке. Шлифовку осу-
ществляли на SiC бумагах с понижением зерни-
стости от #500 до #4000. Образцы полировали в
электролите, состоящим из 1 вес. % NaOH + H2O.
Полировку проводили при следующих парамет-
рах: напряжение 16.5 В, комнатная температу-
ра, плотность тока и время выдержки не более
13 мА/см2 и 60 с соответственно. Качество полиров-
ки на отсутствие следов механической шлифовки
оценивали с помощью оптического микроскопа.

Высокодозное облучение ионами He+ с энер-
гией 30 кэВ при нормальном падении ионов на
поверхность образца проводили на масс-моно-
хроматоре НИИЯФ МГУ [17]. В эксперименте
использовали отполированные деформирован-
ные дисковые образцы диаметром 10 мм. Пучок
ионов с током около 50 мкА и площадью сечения
0.3 см2 направляли таким образом, чтобы основ-
ная интенсивность пучка приходила на половину
радиуса (участок между центром и краем) дисково-
го образца. Флюенс в процессе облучения достигал
величины 1.3 ⋅ 1018 ион/см2. Контроль температуры
осуществляли с помощью хромель-алюмелевой

термопары. Температура образца при облучении
не превышала 50°С. Образцы до и после облуче-
ния взвешивали с точностью 0.01 мг для оценки
коэффициента распыления.

Для сравнительных исследований использова-
ли мелкозернистые образцы, которые получали
из деформированных образцов отжигом при тем-
пературе 1500°C в течение 1 ч в вакууме при дав-
лении не выше 5 ⋅ 10–5 торр. Скорость нагрева за-
давали равной 12°C/мин, охлаждение вместе с пе-
чью до комнатной температуры. Образцы после
отжига подвергали облучению при идентичных,
как деформированных образцов, условиях, без
шлифовки и полировки поверхности.

Микроструктуру образцов после деформации,
отжига, а также морфологию поверхности после
ионного облучения исследовали с помощью раст-
рового электронного микроскопа (РЭМ) Tescan Mi-
ra 3 LHM при ускоряющем напряжении 20 кВ.
Размер зерен оценивали методом дифракции об-
ратно-отраженных электронов. Шаг сканирова-
ния задавали равным от 40 нм до 1 мкм.

Для контроля микроструктурных изменений
образцов до и после деформации и отжига изме-
ряли микротвердость. Измерения проводили ме-
тодом Виккерса с применением четырехгранного
алмазного индентора с помощью микротвердо-
мера MHT-10 и оптического микроскопа Carl
Zeiss. Нагрузку индентора задавали от 100 до 300 г.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА 
И ОБСУЖДЕНИЕ

Исходные образцы (слиток, полученный ар-
гонно-дуговой плавкой) имели поликристалли-
ческую структуру с размером зерен достигающий
1 мм, рис. 1. Микротвердость образцов составля-
ла около 390 HV.

В результате интенсивной пластической дефор-
мации методом кручения под высоким давлением
в образцах сформировалась поликристаллическая
структура с неоднородным распределением разме-
ра зерна в зависимости от центра к краю диско-
вых образцов. В центре образцов диаметром око-
ло 1 мм наблюдалась недостаточно деформирован-
ная структура с относительно крупными зернами.
С увеличением радиуса от центра к краю образ-
цов структура становилась более измельченной.
Это обусловлено тем, что при деформации круче-
нием в центре образца степень деформации ми-
нимальная, с увеличением радиуса от центра к краю
степень деформации повышается. На участке об-
разцов от половины радиуса до его края сформиро-
валась ультрамелкозернистая структура, рис. 2. На-
блюдались области как с относительно равноос-
ными, так и вытянутыми зернами. Распределение
зерен по размеру составило от 50 нм до 1 мкм при
среднем значении 300 нм. Микротвердость соста-
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Рис. 1. РЭМ изображения микроструктуры исходного вольфрама (слиток) снятых при различных режимах съемки: (а)
обратно рассеянные электроны, (б) дифракция отраженных электронов.

1 мм 500 мкм

(111)

(001) (011)

(а) (б)

Рис. 2. РЭМ изображения микроструктуры ультрамелкозернистого вольфрама снятых при различных режимах съем-
ки: (а) обратно рассеянные электроны, (б) дифракция отраженных электронов и (в) распределение зерен по размеру.
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вила 930–970 HV. Увеличение микротвердости свя-
зано с уменьшением размера зерен в вольфраме при
интенсивной пластической деформации [14].

Отжиг ультрамелкозернистых образцов при
температуре 1500°C в течение 1 ч в вакууме при-
вел к росту размера зерна и формированию мел-
козернистой структуры, рис. 3. Размер зерна соста-
вил от 1 до 25 мкм при среднем значении 7 мкм.
Микротвердость образцов после отжига умень-
шилась до 410–460 HV, что следует из известного
соотношения Холла-Петча между размером зерна
и микротвердостью металлов.

В результате высокодозного облучения ионами
He+ с энергией 30 кэВ с флюенсом 1.3 ⋅ 1018 ион/см2

на поверхности мелкозернистых образцов обра-
зовались вздутия – куполообразные блистеры,
рис. 4а. Блистеры располагались на зернах, они
покрывали всю их поверхность и не выходили за
пределы зерен. На границах зерен блистеров не-
обнаруживалось. На некоторых зернах наблюда-

лось отщепление купола блистеров. Диаметр бли-
стеров достигал 1 мкм и не зависел от размера зер-
на. Появление блистеров с разным диаметром, а
также плотностью распределения блистеров на зер-
нах при одинаковых условиях облучения связано с
различной кристаллографической ориентиров-
кой зерен [18, 19].

На поверхности облученных ультрамелкозер-
нистых образцов образовались вздутия, которые,
скорее всего, являются блистерами, рис. 4б. Взду-
тия практически равномерно распределялись по
поверхности образца. Диаметр вздутий составляет
от нескольких сотен нм до 1 мкм, что сопостави-
мо с размером зерен. В отличие от мелкозерни-
стых образцов, вздутия не имели отщеплений ку-
полов.

Измерение веса образцов до и после облуче-
ния ионами He+ с энергией 30 кэВ с флюенсом
1.3 ⋅ 1018 ион/см2 не привело к заметным измене-
ниям. Вес в пределах точности измерения 0.01 мг
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оставался одинаковым даже для мелкозернистых
образцов, где наблюдались отщепления куполов
блистеров.

Рассмотрим различие вздутий/блистеров на
образцах с разным размером зерна. Известно, что
диаметр блистеров зависит от энергии ионов, флю-
енса облучения, температуры [20]. Влияние разме-
ра зерна на диаметр блистера подробно не анали-
зировали. Это, вероятно, обусловлено тем, что на-
блюдения блистеров проводили, в основном, на
мелко- или крупнозернистых металлах, где мно-
жество блистеров одинакового диаметра распола-
гались на зернах и размер зерна не оказывал вли-
яние на диаметр блистеров. Это отчетливо можно
увидеть и в нашем эксперименте на мелкозерни-
стом образце, где на каждом отдельном зерне обра-
зовались блистеры практически одинакового диа-
метра. Диаметр блистера при одинаковых условиях
облучения зависит лишь от кристаллографиче-

ской ориентации зерна [18, 19]. Однако, если раз-
мер зерна меньше, чем диаметр блистера как на
отдельном крупном зерне поликристалла или на
монокристалле то, можно ожидать, что размер
зерна будет оказывать влияние на диаметр взду-
тия/блистера.

В [12] проведен эксперимент по облучению гра-
ни (001) монокристалла вольфрама ионами He+ с
энергией 25 кэВ с помощью гелиевого ионного
микроскопа. Показано, что если облучать площад-
ку на поверхности монокристалла в виде квадрата
со сторонами 2 мкм, то при флюенсе 7 ⋅ 1017 ион/см2

образуется 4 блистера, каждый из которых диамет-
ром до 1 мкм. Облучение площадки со сторонами
1 мкм привело к образованию лишь одного блисте-
ра диаметром 1 мкм. Уменьшение стороны площад-
ки облучаемого квадрата меньше 1 мкм приводило
к образованию блистера диаметром меньше 1 мкм.
При этом блистер не выходил за пределы облуча-

Рис. 3. РЭМ изображения микроструктуры мелкозернистого вольфрама снятых при различных режимах съемки: (а)
обратно рассеянные электроны, (б) дифракция отраженных электронов и (в) распределение зерен по размеру.
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Рис. 4. РЭМ изображения во вторичных электронах поверхности мелкозернистого (а) и ультрамелкозернистого (б)
вольфрама, после облучения ионами He+ с энергией 30 кэВ с флюенсом 1.3 ⋅ 1018 ион/см2. Угол съемки 45°.
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емой площадки, его диаметр соответствовал сто-
роне этой площадки. В нашем случае вздутия на
ультрамелкозернистом образце с диаметром от
нескольких сотен нм до 1 мкм, располагаются,
скорее всего, на отдельных зернах. В пользу этого
предположения свидетельствует то, что диаметры
вздутий сопоставимы с размером зерен на ультра-
мелкозернистом образце.

В [20] показано, что диаметр блистеров d соотно-
сится с толщиной крышки блистера t как: .
Показатель степени ν зависит от механических
свойств металла и может принимать значения от
0.9 до 1.5. С учетом этого выражения, и того, что
диаметр вздутия на ультрамелкозернистом образ-
це в среднем меньше, чем диаметр блистера на
мелкозернистом образце, можно предположить,
что толщина крышки вздутия на ультрамелкозер-
нистом образце также меньше, чем на мелкозер-
нистом образце.

ВЫВОДЫ
Проведено высокодозное облучение ультра- и

мелкозернистого вольфрама ионами He+ с энер-
гией 30 кэВ с флюенсом 1.3 ⋅ 1018 ион/см2. Ультра-
мелкозернистую структуру в образцах с разме-
ром зерен от 50 нм до 1 мкм при среднем значении
300 нм получили интенсивной пластической де-
формацией методом кручения под высоким давле-
нием 6 ГПа. Мелкозернистую структуру со средним
размером зерна 7 мкм получили отжигом ультра-
мелкозернистых образцов при температуре 1500°C.

Облучение мелкозернистых образцов привело
к образованию вздутий – куполообразных блисте-
ров на поверхности. Блистеры диаметром до 1 мкм
располагались на зернах, они покрывали всю их
поверхность и не выходили за пределы зерен. При
этом, на границах зерен блистеров не обнаружи-
валось. Размер зерна на мелкозернистом образце
не оказывал влияния на диаметр блистера. На уль-
трамелкозернистых образцах при идентичных усло-
виях облучения образовались вздутия, которые,
скорее всего, являются блистерами. Диаметр взду-
тий составлял величину от нескольких сотен нм
до 1 мкм, что сопоставимо с размером зерен в уль-
трамелкозернистом образце.

На мелкозернистых образцах для части бли-
стеров наблюдалось отщепление куполов. На уль-
трамелкозернистых образцах отщепление купо-
лов не наблюдалось.
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Abstract—The influence of an ultrafine-grained tungsten structure with an average grain size of 300 nm on
the formation of blisters on the surface under high-dose irradiation by 30-keV He+ ions has been studied.
Fine-grained tungsten has been used for comparative studies. The microstructure and surface morphology of
the samples have been investigated.
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