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ностью. Взаимодействие частиц с поверхностью задается потенциалом твердых сфер. Одночастич-
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уравнения Фредгольма второго рода. Ядро и правая часть уравнения Фредгольма вычисляется ана-
литически в приближении Перкус–Йевика. Получено аналитическое решение модифицированно-
го синглетного уравнения с учетом нелокальных взаимодействий.
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ВВЕДЕНИЕ
Классическая статистическая теория жидко-

стей базируется на интегральных уравнениях
Орнштейна–Цернике для одночастичной и пар-
ной функций распределения. В свою очередь, ядра
этих уравнений являются нелокальными бридж-
функционалами от парной функции распределе-
ния, что обусловлено изменением плотности в
окрестности произвольным образом выделенных
двух частиц, т.е. эквивалентно учету нелокальных
взаимодействий. Особенно такие эффекты суще-
ственны при описании кристаллизации или стек-
ловании жидкостей. Непосредственное решение
таких уравнений является практически невозмож-
ной задачей, так как нелокальные бридж-функцио-
налы являются бесконечными функциональны-
ми рядами неприводимых диаграмм, каждая из
которых не сводится к выражениям типа свертки.
В настоящее время факторизация таких диаграмм
проводится либо их заменой простыми аналити-
ческими выражениями, либо разложением в мед-
ленно сходящиеся ряды по степеням плотности
[1–5]. В результате получаются приближенные
интегральные уравнения, в которых нелокальны-
ми взаимодействиями не учитываются. Наиболее
известными из них являются гиперцепное, Пер-
кус–Йевика и Мартынова–Саркисова.

Таким образом, в литературе отсутствуют све-
дения о решении уравнений Орнштейна–Цернике
с непосредственным вычислением неприводимых
диаграмм. Нами рассматривается более простой

метод решения уравнений Орнштейна–Цернике
для одночастичной функции распределения жид-
кости вблизи твердой поверхности. Вместо вы-
числения каждой диаграммы в отдельности, мы
предлагаем записать сумму их бесконечного ряда
в виде линейного интегрального уравнения, до-
пускающего в некоторых случаях аналитическое
решение. Такой подход важен для изучения фи-
зико-химических аспектов на границах межфаз-
ных разделов твердое тело–жидкость, жидкость–
насыщенный пар.

ПОСТАНОВКА ЗАДАЧИ

В методе частичных функций распределения
статистической физики термодинамически-рав-
новесных жидкостей все структурные и термоди-
намические характеристики вычисляются через
одночастичную  и
двухчастичную 
функции распределения. Заданными величинами
являются потенциальная энергия частиц во внеш-
нем поле , энергия их межмолекулярного вза-
имодействия  и температура . Опосре-
дованное взаимодействие через окружающую
среду задается перенормированными потенциа-
лами  и , которые находятся из соотношения
Орнштейна–Цернике (ОЦ) [1–4]
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(1)

для парной  и прямой 
корреляционной функции. В уравнения (2) вхо-

дит численная плотность  , где – харак-

терный размер молекулы. Численная плотность
изменяется в пределах , что соответствует
изменению концентрации от идеального газа до
плотной жидкости. В свою очередь, прямые кор-
реляционные функции  выражаются че-
рез бесконечные функциональные ряды непри-
водимых диаграмм , ,

(2)

здесь ,  – бридж-функционалы
(бесконечные функциональные ряды неприводи-
мых диаграмм)

(3)

Каждая диаграмма является многомерным ин-
тегралом. Линии соответствуют парным корреля-
ционным функциям . Черные точки означают
умножение на  с интегрированием по соответ-
ствующей координате . Светлые точки соответ-
ствуют аргументам . Таким образом, значения
бридж-функционалов зависят не только от аргу-
мента , но и от распределения плотности в
окрестности точек , что эквивалентно учету
нелокальных взаимодействий.

Непосредственное решение уравнений (1–3)
является практически невозможной задачей, так
как нелокальные бридж-функционалы не явля-
ются выражениям типа свертки. Поэтому, как от-
мечалось выше, бридж-функционалы заменяют
бридж функциями. В этом случае приближенные
уравнения имеют простой вид для объемных жид-
костей в отсутствии внешних полей и вдали от
ограничивающих поверхностей. В силу сфериче-
ской симметрии системы имеем  и первое из
уравнений (1) определяет избыточный химиче-
ский потенциал . Второе уравнение в (1) опреде-
ляет парную корреляционную функцию ,
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которая зависит только от расстояния между цен-
трами двух частиц  и вычисляется реше-
нием какого-либо приближенного интегрального
уравнения. Соответственно, структурные и термо-
динамические величины определяются функцией

, для вычисления которой разработаны эф-
фективные численные методы [6]. Исключением
является аналитическое решение функции 
для молекулярной системы твердых сфер в при-
ближении Перкус–Йевика [7].

В случае пространственно-неоднородных си-
стем (молекулярная система вблизи твердой по-
верхности) для вычисления микроструктуры ве-
щества и его термодинамических параметров не-
обходимо знать обе функции распределения –
одночастичную  и двухчастичную . Функция

 зависит только от одной переменной z1 – удале-
ния частицы от поверхности. Однако функция 
теперь зависит от трех переменных- расстояния
между центрами частиц  и удаления каждой из
них от поверхности – , . В так называемом син-
глетном приближении  заменяют ее гра-
ничным значением вдали от поверхности .
Тем самым второе уравнение системы (1) определя-
ет парную корреляционную функцию  про-
странственно-однородной жидкости. Ядро первого
уравнения системы также вычисляется через функ-
цию . В зависимости от замыканий между
прямой и парной корреляционной функции полу-
чаются различные нелинейные интегральные
уравнениям для одночастичной функции распре-
деления . Обзор численных решений син-
глетных уравнений приведен в работе [6].

МОДИФИЦИРОВАННОЕ 
СИНГЛЕТНОЕ УРАВНЕНИЕ

Для молекулярной системы, взаимодейству-
ющей с твердой поверхностью посредством упру-
гих, уравнение для одночастичной функции

 описывает изменение локаль-
ной плотности в верхнем полупространстве ;
нижнее полупространство  недоступно для
движения молекул (  – нормаль к поверхности).
В наших работах [8–11] было предложено моди-
фицировать синглетное уравнение. Второе урав-
нение системы (1) решается также, как и в син-
глетном уравнении. Однако в первом ее уравне-
нии (1) мы теперь учитываем все диаграммы
бесконечного ряда. Таким образом, полагаем

(4)

где прямая корреляционная функция  со-
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сти, а функция  учитывает вклад всех
неприводимых диаграмм. Подстановка (4) в урав-
нения ОЦ с последующим интегрированием в ци-
линдрической системе координат и предположени-
ем, что для всех значений  справедлива аппрокси-
мация , приводит к уравнениям

(5)

(6)

Уравнение (5) является линейным интеграль-
ным уравнением Фредгольма второго рода

(7)

где мы обозначили , .
Уравнение (5) имеет аналитическое решение в
приближении Перкус–Йевика для прямой кор-
реляционной функции

(8)

где  – функция Хевисайда. Параметры ,
,  определены следующим образом:

(9)

Подставляя (6) в (5), убеждаемся, что
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В результате функции  определена на ин-
тервалах
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Из (11), (12) следует, что функция  и ее пер-
вая производная  непрерывны в точке .
Заметим, что при дифференцировании (12) удоб-
но под знаком интеграла сделать замену перемен-
ных, что приводит к уравнению следующего вида

(15)

Таким образом, совместное решение уравне-
ний (11), (13) позволяет найти решение на всем
интервале .

Решение однородного интегро-дифференци-
ального уравнения (13) представляем в виде

(16)

Подстановка (14) в (13) приводит к системе
двух трансцендентных уравнений для определе-
ния волновых чисел  [8–11], решение кото-
рых определяют декремент затухания и период
осцилляций. Оставшиеся неизвестными ампли-
туды  находятся из условия непрерывности
функции и ее первой производной в точке ,
что приводит к соотношению для интервала 

(17)

Решение неоднородного уравнения (11) зави-
сит от правой части, которая является полиномом
шестой степени по переменной . Соответствен-
но решение неоднородного уравнения на интер-
вале  , с учетом непрерывности функции и ее
первой производной в точке , представляем
в виде полинома по степеням 
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Подстановка (16) в (11) приводит к системе ли-
нейных алгебраических уравнений для определе-
ния коэффициентов :
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где параметры в правых частях (17) определены
следующим образом

(20)

Таким образом, формулы (17), (18) полностью
определяют функцию  на всем интервале

. График функции  для различных
плотностей приведен на рис. 1.

Начало отсчета выбрано в центре частицы,
рассматриваемой как твердая сфера. Расстояние
между центрами двух твердых сфер в единицах 
равно единице.

Рассмотрим теперь уравнение (6), которое
также будем решать в синглетном приближе-
нии, в соответствие с которым полагаем

. Дифференцированием по
переменной , уравнение (6) сводится к уравне-
нию Вольтерра первого рода

(6) (2) (3)
0

(5) (5)
0

(1) 12 [2 (1) (0)

2 (1) (0) (1)] 0,

f f

f

+ η ψ
+ ψ + ψ =

(2) (1) (1) (1)

(1) (2) (1) (1)

(2) (1) (1) (1)

(1) (1) (2)

1 1[ (1) (1) (1) (1)] (1) (1),
3! 2 !

1(1) (1) [ (1) (1) (1) (1)],
2 !

[ (1) (1)] (1) (1) (1),

(1) (1) (1) (1).

a f f f

b f f f

c f f

d f f

= ψ − ψ − ψ

= ψ − ψ − ψ

= ψ − ψ − ψ
= ψ − ψ

1( )f z

10 z≤ < ∞ 1( )f z

σ

(1) (1)
12 12 1 12 12 12( , , ) ( )S r z z S r→

1z

Рис. 1. Решение линейного однородного уравнения Фредгольма второго рода. Пунктирная линия соответствует плот-
ности , сплошная черная линия соответствует плотности , сплошная серая линия соответствует
плотности .
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(21)

Правая часть и ядро уравнения (21) были пред-
варительно вычислены на основании решения
уравнения (5). График решения функции 
приведен на рис. 2.

Начало отсчета выбрано в центре частицы. Рас-
стояние между центром частицы и упругой непро-
ницаемой поверхностью в единицах  равно .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Предложенное нами модифицированное урав-

нение позволило разделить вклад локальных и не-
локальных межмолекулярных взаимодействий в
граничных слоях жидкостей. Такое разделение
оказалось возможным только в частном случае,
когда прямая корреляционная функция объем-
ной жидкости вычисляется аналитически в при-
ближении Перкус–Йевика. В результате исход-
ное нелинейное синглетное уравнение свелось к
системе двух линейных интегральных уравнений
Фредгольма второго рода и Вольтерра первого рода.
Ядра и правые части учитывают как локальные, так
и нелокальные взаимодействия. Оба уравнения мы
решаем стандартными методами. Все межмолеку-
лярные взаимодействия рассматриваются как упру-

1

1

(1)
1 12

0

(1)
1 12

0

(1)
(1) 1 1
12

1

12 ( ( ) ( )

( ) ( )

( ) ( )( ) .
1 ( )

z

z

xdx f z x S x

xdx f z x S x

f z f zxdxS x
f z

∞

∞


η − −


− + +


+ = −

+







(1)
12 1( )S z

σ 1/2

гие столкновения. Показано, что решение имеет
аксиальную симметрию, свойственную тонкому
приповерхностному слою жидкости. Переход к
объемному решению происходит на удалении 5–
6 молекулярных диаметров от поверхности. Вы-
числены характерные значения затухания и пери-
ода осцилляций одночастичной функции распре-
деления. Такое поведение типично для слоистой
структуры жидкости, граничащей с твердой поверх-
ностью. Отметим, что переходный слой жидкость –
насыщенный пар также имеет слоистую структуру
толщиной несколько молекулярных диаметров.
Так как плотность насыщенного пар намного мень-
ше плотности жидкости, то полученное нами реше-
ние для приповерхностного слоя жидкости может
быть хорошим приближением для описания грани-
цы раздела жидкость – насыщенный пар.
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Nonlocal Effects of the Intermolecular Interaction in Boundary Layers of Liquids
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Abstract—A molecular system of hard spheres adjacent to a perfectly smooth solid surface is considered. The
interaction of particles with the surface is determined by the potential of hard spheres. The single-particle dis-
tribution function, which sets the local density, is found by solving the Fredholm integral equation of the sec-
ond kind. The core and the right-hand side of the Fredholm equation are calculated analytically in the Per-
cus–Yevick approximation. An analytical solution of the modified singlet equation is obtained, taking into
account nonlocal interactions.
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