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ВВЕДЕНИЕ

Циркониевые сплавы традиционно применя-
ются в качестве конструкционных материалов ак-
тивных зон тепловых реакторов, благодаря низкому
поглощению нейтронов, достаточному уровню ме-
ханических свойств и коррозионной стойкости
[1, 2]. В ближайшие десятилетия альтернативы им
нет. Несмотря на то, что в последнее время для
оболочек твэлов рассматриваются такие материалы
как карбид кремния, создание технологии произ-
водства, позволяющей обеспечить необходимый
комплекс свойств оболочки, связано с заметны-
ми трудностями (например, [3]). Поэтому и осво-
енные промышленностью циркониевые сплавы,
и их модернизированные варианты, разрабатыва-
емые в настоящее время в разных странах (напри-
мер, Axiom [4]), являются перспективными мате-
риалами для активных зон тепловых реакторов.

В процессе эксплуатации в водо-водяном энер-
гетическом реакторе оболочки твэлов и элементы
тепловыделяющих сборок (ТВС) из циркониевых
сплавов подвергаются коррозии в среде теплоно-
сителя (воды под давлением), вследствие чего на их

поверхности образуется и растет оксидная пленка,
а в объем материала проникает водород [2].

Из-за низкого предела растворимости [5] через
2–3 года после начала эксплуатации водород на-
чинает выделяться в элементах ТВС в виде гидри-
дов циркония, имеющих пластинчатую форму.
При расхолаживании активной зоны количество
выделившихся гидридов увеличивается в соот-
ветствии с фазовой диаграммой [5]. Отдельные
микропластины гидридов, из которых состоит
наблюдаемый на металлографии макроскопиче-
ский гидрид, ориентируются параллельно базис-
ным плоскостям ГПУ решетки зерен цирконие-
вого сплава. Поэтому ориентация макропластин
гидридов определяется, в том числе, текстурой
материала [6, 7].

Гидриды в трубчатых элементах ТВС (оболоч-
ках твэлов, направляющих каналах) чаще всего
ориентируются преимущественно в тангенциаль-
ном (окружном) направлении, благодаря специ-
ально созданной при производстве труб текстуре.
При этом их влияние на механические свойства
материала несущественно при концентрациях во-
дорода характерных для эксплуатации в тепловых
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реакторах. Однако, при определенных условиях –
в присутствии тангенциальных растягивающих
напряжений, превышающий пороговое значе-
ние, гидриды могут переориентироваться в ради-
альное направление, что в свою очередь может
привести к снижению пластичности материала
вплоть до недопустимо низких значений [6, 7].
Поэтому изучение условий переориентации гид-
ридов и их влияния на пластичность материала
имеет первостепенное значение.

Поскольку в отсутствии растягивающих окруж-
ных напряжений ориентация гидридов определя-
ется только текстурой, наводороживание с после-
дующей металлографией гидридов используется
для контроля текстуры при производстве труб для
элементов активных зон. В качестве количествен-
ной характеристики гидридов применяется коэф-
фициент Fn, который численно равен отношению
полной длины всех радиально ориентированных
гидридов (с углом <45° к радиальному направле-
нию трубы) в исследуемом поперечном сечении
образца, к полной длине всех наблюдаемых в се-
чении гидридов. Для контроля качества продук-
ции этого коэффициента достаточно, поскольку
за десятилетия использования была показана его
хорошая применимость для данной задачи.

Как следствие, по традиции этот коэффициент
продолжили применять для оценки пластичности
материала с гидридами при эксплуатации и при
проведении исследований по переориентации гид-
ридов в циркониевых сплавах. Однако, постепен-
но выяснилось, что корреляция Fn с пластичностью
(механическими свойствами) материала оставляет
желать лучшего. В частности, в одних случаях при
вполне допустимом с точки зрения качества ис-
ходных труб значении Fn = 0.3 наблюдалось хрупкое
разрушение материала, а в других при Fn > 0.3 мате-
риал был пластичен. Чтобы устранить эту пробле-
му разными исследователями были предложены
другие коэффициенты ориентации гидридов, кото-
рые учитывают не только непосредственно ориен-
тацию гидридов, но и связность гидридной сетки
и возможность распространения трещины в на-
правлении близком к радиальному направлению
трубчатого образца, как по гидридам, так и по пла-
стичной матрице. Обзор основных наиболее пер-
спективных для применения коэффициентов, са-
мый продвинутый из которых на данный момент
RHCM45, представлен, например, в [6, 8].

Фактически, характер разрушения образца
при механических испытаниях, как и характер раз-
рушения изделия или детали при эксплуатации или
в ходе специальных экспериментов с ней, может
быть достоверно определен только по результа-
там фрактографии – исследования макро и мик-
роструктуры излома (например, [9]). Исключение
составляют механические испытания на одноосное
растяжение, где форма образца в окрестности из-

лома (наличие утяжки, ориентация поверхности из-
лома относительно оси образца и т.д.), однозначно
позволяет определить характер разрушения на
основании существующих представлений [9]. Од-
нако, для образцов другой формы, где при испыта-
ниях реализуется сложное трехосное напряженно-
деформированное состояние, несмотря на схожее
изменение формы образца в окрестности излома
(наличие утяжки, и т.д.), однозначная связь этого
изменения с характером излома не является дока-
занной. В случае оболочек твэлов и направляю-
щих каналов ТВС, имеющих трубчатую форму,
испытания в поперечном направлении проводят-
ся на кольцевых образцах, растягиваемых с помо-
щью полуцилиндрических опор. В этом случае,
как раз и реализуется трехосное напряженно-де-
формированное состояние. В ходе испытаний ра-
бочие части образца сначала выпрямляются, а затем
происходит их дальнейшее растяжение. Принято
считать, что если на этой второй стадии растяже-
ния образец разрушается до перехода машинной
диаграммы растяжения на криволинейный уча-
сток, то разрушение хрупкое (пластичность равна
нулю). Однако, при таком подходе не учитывает-
ся, что уже произошло выпрямление рабочих ча-
стей образца, т.е. реальная пластичность материала
ненулевая. Это еще раз подтверждает, что при крат-
ковременных механических испытаниях кольце-
вых образцов трубчатых изделий достоверно ха-
рактер разрушения может быть установлен толь-
ко с помощью фрактографии.

В настоящей работе проведены механические
испытания кольцевых образцов из модельного цир-
кониевого сплава с гидридами различной ориента-
ции для получения широкого диапазона пласти-
ческих свойств, имеющих пластические свойства в
широком диапазоне. Проведена фрактография из-
ломов после механических испытаний и разра-
ботаны процедуры определения макро- и микро-
параметров излома. Выявлены параметры, наи-
более подходящие для применения в качестве
количественных характеристик изломов образ-
цов из циркониевых сплавов. Сопоставлены раз-
личные коэффициенты ориентации гидридов с
пластичностью материала исследованного сплава
и параметрами изломов. Выполнена оценка по-
рогового напряжения разрушения приповерх-
ностного радиального гидрида при комнатной
температуре.

1. МАТЕРИАЛЫ, ОБРАЗЦЫ, 
МЕТОДЫ ИСПЫТАНИЙ

В работе использованы образцы труб Ø12.6 ×
× 10.9 мм из модельного циркониевого сплава
системы легирования Zr–Nb–Sn–Fe (близкого
по составу к сплаву ZIRLO) в частично рекри-
сталлизованном состоянии.
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От исходных труб были отрезаны патрубки дли-
ной 100 мм и подвергнуты процедуре наводорожи-
вания из газовой фазы, аналогичной описанной в
работе [10], до различных концентраций водоро-
да в диапазоне 100–400 ppm. Контроль достигну-
того содержания водорода в патрубках проводил-
ся с помощью метода инфракрасной абсорбции
на анализаторе LECO TCH-600. После этого про-
водилась переориентация гидридов в образцах с
помощью второго способа из работы [11], вклю-
чающего: заполнение образцов аргоном под дав-
лением, герметизацию и соответствующую тер-
мообработку для растворения и выделения гид-
ридов в присутствии окружных растягивающих
напряжений. При этом использовались давления
аргона, соответствующие окружным напряжени-
ям в широком диапазоне от 0 до 150 МПа. В ре-
зультате были получены образцы с гидридами
различной ориентации (от преимущественно
тангенциальной до преимущественно радиаль-
ной), обладающие различной пластичностью. От
образцов были отрезаны кольца высотой 2 мм для
механических испытаний и последующих фрак-
тографических исследований.

Механические испытания при комнатной тем-
пературе (20°C) проводились на испытательной ма-
шине INSTRON 8800. Изображения изломов для
фрактографии были получены с помощью сканиру-
ющего электронного микроскопа Zeiss EVO 50 XVP.

Съемка выполнена с двумя увеличениями – ма-
лым (×20 или ×50) и большим (×1000) для полу-
чения макро- и микро-характеристик изломов,
соответственно.

Расчет напряженно-деформированного состо-
яния в рабочей части образцов при механических
испытаниях проводился с помощью программно-
го комплекса MSC MARC в соответствии с про-
цедурой, описанной в [11].

2. КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ 
ИЗЛОМОВ

Характер изломов образцов после механиче-
ских испытаний может быть, как преимущественно
вязким, так и преимущественно хрупким (в зави-
симости от состава сплава, содержания водорода,
ориентации гидридов и температуры механических
испытаний), а также может носить смешанный ха-
рактер. Рассмотрим типичные изломы кольцевых
образцов, разрушившихся в ходе кратковременных
механических испытаний, и количественные пара-
метры, которые могут быть измерены по изобра-
жениям изломов, полученным с помощью СЭМ.

2.1. Макропараметры изломов

Типичное изображение образца с вязким из-
ломом (типа “конус-чашка”) при увеличении ×50

Рис. 1. Типичный вид излома типа “конус−чашка” в R (а, б) и T (в) направлении с обозначениями параметров.
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представлено на рис. 1 в двух проекциях: вид с ради-
ального (R) и с тангенциального (T) направлений.

В качестве параметров излома, которые могут
быть непосредственно измерены, традиционно вы-
бирают следующие величины: a (a') и b (b') – при-
ращение размеров поперечного сечения излома в
двух взаимно перпендикулярных направлениях
по сравнению с исходными размерами образца и
c (c') – характерные размеры скосов среза [9]. С
помощью этих величин могут быть непосредствен-
но рассчитаны следующие макропараметры из-
лома: относительное изменение ширины сечения

(являющейся высотой кольца)  =

= ; относительное изменение толщины

сечения  = ; параметр,

, характеризующий наличие (при отлич-

ном от нуля значении) величину скосов среза.
Для уменьшения погрешности измерений ука-

занных параметров необходимо получить менее
контрастные микрофотографии, на которых хо-
рошо виден весь профиль образца в проекции ри-
сунка. При этом точность существенно зависит от
направления съемки излома, его профиля и от воз-
можности определения на изображении границ из-
лома и образца. В качестве примера на рис. 2 пред-
ставлены изображения двух образцов для кото-
рых проводилось измерение макропараметров
излома (утяжки).

Для образца № 1 (рис. 2) погрешность измере-
ния параметров утяжки не превышает 5% (дове-
рительная вероятность α = 0.95). При этом для
параметра a основной вклад в ошибку вносит вы-
бор точки отсчета: на рис. 2а видно, что граница
поверхности разрушения (правая наклонная пря-
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мая) и ребро образца (левая наклонная прямая)
не параллельны, кроме того, контраст изображе-
ния в окрестности ребра образца (левая наклон-
ная прямая) низкий. Для образца № 2 (рис. 2б)
погрешность измерения параметров a и a' такая
же, как для образца № 1, а погрешность измере-
ния параметра b (b') достигает 14% (α = 0.95). Как
видно на рис. 2б этот образец был плохо отцен-
трирован при съемке, в результате выбор верхней
границы для измерения параметра b затруднен
(линии на рис. 2б).

Таким образом, для измерения параметров
утяжки a, a', b, b', c, c' указанным способом необ-
ходимо аккуратно ориентировать образцы перед
записью изображения и тщательно подбирать кон-
траст, что не всегда удается сделать (при получении
четкого контраста границы излома, граница осталь-
ной части образца часто остается затуманенной и
наоборот). Поэтому был также рассмотрен другой
параметр излома – относительное изменение пло-
щади поперечного сечения образца ΔS/S0, для из-
мерения которого достаточно получить изображе-
ние с четким контрастом только области излома.

Применявшийся способ измерения площади
излома проиллюстрирован на примере образца № 3
(рис. 3). На рисунке для этого образца приведены
снимок проекции излома с максимальным кон-
трастом излома (границы излома) и обработанное
изображение, полученное с помощью программы
Adobe Photoshop CS6. Обработка осуществлялась
вручную путем прорисовывания сечения на фо-
тографии и заливки выбранным цветом (синим).
Затем по числу окрашенных пикселей была рас-
считана площадь сечения излома и это значение
умножено на размерный масштабный фактор,
учитывающий увеличение.

По измеренному значению площади излома S
и исходному значению для площади сечения
образца образца до механических испытаний S0,
вычисленному по исходным геометрическим раз-

Рис. 2. Изображения для измерений параметров излома (а) образца № 1 и (б) образца № 2.

(а) (б)

100 мкм
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Рис. 3. Изображения излома для образца № 3: (а) исходное, (б) обработанное.

(а) (б)

Рис. 4. Взаимные зависимости параметров излома.
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мерам, для каждого образца было рассчитано от-
носительное изменение площади ΔS/S0. Точность
измерения размеров площади излома при таком
подходе составляет 0.2%. Поскольку погреш-
ность измерения исходной площади сечения тру-
бы находится на том же уровне, погрешность изме-
рения ΔS/S0 не превышает 0.4%. Однако, это только
случайная погрешность. Учитывая разную кон-
трастность снимков и “ручной” способ получения
границы сечения при обработке изображения, реа-
листичная оценка для погрешности величины
ΔS/S0 дает 2–4%.

На рис. 4 для оценки возможных корреляций
представлены зависимости первой группы пара-
метров излома Δh/h, Δt/t и q от относительного
изменения площади ΔS/S0 для всех исследован-
ных образцов. Коэффициент корреляции вели-
чин Δh/h и ΔS/S0 (в приближении линейной зависи-
мости) составляет 0.85, а величин Δt/t и ΔS/S0 – 0.77.
Для параметра q корреляция с величиной ΔS/S0
вообще не наблюдается (см. рис. 4).

Таким образом, наиболее достоверным макро-
параметром, позволяющим оценивать характер из-
лома с наименьшей погрешностью, является пара-
метр ΔS/S0 (на втором месте Δh/h). Измерение раз-
меров скосов среза для образцов с разным уровнем
пластичности не позволяет извлечь достоверный
количественный параметр.

Отдельно следует отметить, что измерение
указанных параметров возможно только для вяз-
ких изломов. В случае чисто хрупких изломов па-
раметры a, a', b, b', c, c' близки к нулю в пределах

точности измерений, а следовательно, ,

q = 0, ΔS/S0 = 0.

2.2. Микропараметры изломов

На изображениях изломов изучаемых образцов,
полученных с увеличением ×1000, могут быть выде-
лены следующие принципиально различающиеся
внешним видом элементы структуры: ямки вязкого
разрушения, фасетки скола и квази-скола, вязкие

1h t
h t

Δ Δ= =
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перемычки, вторичные трещины [9]. На рис. 5
приведены типичные микроструктуры вязкого и
хрупкого изломов, полученных на исследован-
ных образцах.

Отличительным признаком вязкого разруше-
ния на фрактографическом снимке является ямоч-
ная структура, которая состоит из ямок, ограничен-
ных вязкими перемычками (рис. 5а). Хрупкий из-
лом исследованных образцов из циркониевого
сплава с гидридами не является хрупким в полной
мере ввиду пластичности циркониевой матрицы,
что проявляется в отсутствии фасеток внутризе-
ренного и межзеренного скола, ступенек скола и
язычков. Хрупкость проявляется в виде фасеток
квазискола, которые представляют собой относи-
тельно ровные участки поверхности разрушения,
не всегда связанные ориентационно с плоскостями
скола. На изображении хрупкого излома (рис. 5б)
наряду с признаками хрупкого разрушения присут-
ствуют признаки пластической деформации. Также
на изображениях смешанного или хрупкого излома
могут быть идентифицированы трещины.

В качестве количественной характеристики
излома на микроуровне сначала были выбраны
два параметра – доля площади поверхности изло-
ма, занимаемая хрупкими элементами структуры
(Δs/s)хруп, и доля площади, занимаемая трещина-
ми (Δs/s)тр. На самом деле, для всех исследован-
ных изломов (Δs/s)хруп = 1 – (Δs/s)вязк, поэтому с
тем же успехом вместо (Δs/s)хруп можно было бы
использовать и параметр доля площади поверх-
ности излома, занимаемая вязкими элементами
структуры (Δs/s)вязк.

На примере изображения, представленного на
рис. 5б, опишем процедуру анализа изображений
микроструктуры излома с помощью программы
Adobe Photoshop CS6. Сначала было создано че-
тыре слоя изображения, соответствующих следу-

ющим элементам микроструктуры: вязкие пере-
мычки, ямки, хрупкие участки и трещины. Размер
ямок играет важную роль в описании характера раз-
рушения, однако, поскольку его среднее значение
на рассматриваемом участке изображения одно-
значно связано с площадью, занимаемой вязкими
перемычками, было принято решение не выпол-
нять разделение ямок по размерам, а к ямкам от-
носить все вязкие части снимка. На рис. 6 приве-
ден участок изображения с рис. 5б и этот же уча-
сток после разметки в Adobe Photoshop CS6. Здесь
хрупким участкам соответствуют области со сплош-
ной заливкой (синий цвет), вязким участками – об-
ласти с перемычками на фоне сплошной заливки
(красные области с зелеными перемычками), тре-
щинам – отдельно стоящие линии (желтого цвета).

После разметки снимков для проведения ко-
личественного анализа были рассчитаны пара-
метры (Δs/s)хруп и (Δs/s)тр.

Для оценки применимости параметров (Δs/s)хруп
и (Δs/s)тр в качестве количественных характери-
стик изломов на рис. 7 приведены их зависимости
от макропараметра ΔS/S0. Из рисунка следует, что
наблюдается приемлемая корреляция между ве-
личинами (Δs/s)хруп и ΔS/S0 (рис. 7а), а между ве-
личинами (Δs/s)тр и ΔS/S0 (рис. 7б) корреляция
полностью отсутствует. Таким образом, доля пло-
щади, занимаемая трещинами, не показательна при
рассматриваемом способе обработки изображений.
Для расчета этой (либо аналогичной) величины не-
обходимо получить контрастный снимок всего се-
чения излома, что связано с чрезмерно большими
трудозатратами при использовании электронной
микроскопии высокого разрешения (×1000).

Таким образом, определены две характеристи-
ки, которые могут быть использованы для коли-
чественной оценки параметров изломов образцов
исследуемого материала: относительное измене-

Рис. 5. Микроизображения изломов: (а) типичный вязкий излом (образец № 4); (б) типичный хрупкий излом (образец
№ 5).

(а) (б)

10 мкм
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ние площади образца ΔS/S0 (макропараметр) и
доля площади излома, занимаемая хрупкими эле-
ментами (Δs/s)хруп (микропараметр). Далее с по-
мощью этих параметров исследуется взаимосвязь
пластичности материала с ориентацией гидридов.

3. АНАЛИЗ ВЗАИМОСВЯЗИ ОРИЕНТАЦИИ 
ГИДРИДОВ С МЕХАНИЧЕСКИМИ 

ХАРАКТЕРИСТИКАМИ МАТЕРИАЛА 
И ПАРАМЕТРАМИ ИЗЛОМОВ

Проведенные механические испытания коль-
цевых образцов показали существенное влияние
ориентации гидридов на пластичность материа-
ла. В качестве примера на рис. 8 представлены ти-
пичные машинные диаграммы для шести образ-

цов с различной пластичностью, полученные в
ходе экспериментов по переориентации с разны-
ми значениями максимального окружного растя-
гивающего напряжения. Наблюдается снижение
пластичности образцов по мере увеличения окруж-
ного напряжения, т.е. увеличения доли радиаль-
но ориентированных гидридов в материале.

На рис. 9 приведены зависимости пластично-
сти материала всех исследованных образов с раз-
личной ориентацией гидридов от максимального
окружного напряжения переориентации σ и от ко-
эффициента ориентации гидридов Fn. Пластич-
ность ниже 5% наблюдается в образцах, прошед-
ших эксперимент по переориентации при макси-
мальных окружных напряжениях 70 МПа и выше

Рис. 6. Пример исходного (а) и размеченного (б) снимка.

(а) (б)

Рис. 7. Зависимости макро- и микропараметров излома.

(а) (б)
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(рис. 9а), соответствующие коэффициенты ориен-
тации гидридов лежат в диапазоне Fn > 0.25 (рис. 9б).

Следует также отметить наблюдаемый на рис. 9
существенный разброс величины общего относи-
тельного удлинения δ на обеих зависимостях. На-
пример, после экспериментов по переориентации
при максимальном окружном напряжении 70 МПа
зарегистрирована пластичность разных образцов
в диапазоне от 0 до 18%. Такой разброс с подавля-
ющей вероятностью связан с микроструктурой
гидридной сетки, т.е. с наличием (либо отсут-
ствием) ветвящейся гидридной структуры макси-

мальной протяженности по толщине трубы от
наружной до внутренней поверхности (стенки), и
расположенной для данного образца в зоне возник-
новения максимальных растягивающих напряже-
ний при механических испытаниях. Поскольку в
такой структуре присутствуют тангенциально и ра-
диально-ориентированные гидриды при наличии
окружных растягивающих напряжений она опреде-
ляет возможные пути распространения трещин.
Проведенные металлографические исследования
на участках вблизи изломов образцов с низкой пла-
стичностью показали, что разрушение происходит
вдоль такой плотной сетки, включающей ради-
ально-ориентированные гидриды (рис. 10). Кро-
ме того, на рис. 10 наблюдаются разрушенные гид-
риды рядом с линией магистральной трещины, что
свидетельствует о возникающих в этой области об-
разца напряжениях, превышающих предел прочно-
сти гидрида при температуре испытаний.

Кроме того, результаты, представленные на
рис. 9б, свидетельствуют о том, что, как и было
установлено ранее [6–8], коэффициент ориента-
ции гидридов Fn является не вполне надежным
параметром в качестве характеристики, показы-
вающей влияние ориентации гидридов на меха-
нические свойства материала в условиях пере-
ориентации гидридов под действием окружных
растягивающих напряжений: в диапазоне Fn от
0.25 до 0.4 встречаются образцы, как с нулевой,
так и с высокой пластичностью.

На рис. 11 представлена зависимость доли сквоз-
ных связанных структур гидридов (простирающих-
ся от одной стенки трубы до другой) β от коэффи-
циента ориентации Fn, полученная при анализе
металлографических изображений всех исследо-
ванных образцов в окрестности излома. Величи-

Рис. 8. Типичные машинные диаграммы растяжения
образцов с различной ориентацией гидридов (раз-
личной пластичностью).
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на β определялась как отношение длины гидри-
дов, входящих в сквозную связанную структуру
(как на рис. 10), к полной длине всех гидридов на
рассматриваемом участке изображения.

Видно (рис. 11), что сквозные гидриды могут
присутствовать в образцах с коэффициентом ори-
ентации 0.2–0.3. Таким образом, даже небольшое
количество связанных сквозных структур гидрид-
ной сетки могут привести к снижению пластич-
ности материала с приемлемым (в общепринятом
смысле) значением Fn.

Как указано во введении, методические осо-
бенности проведения кратковременных механи-

ческих испытаний, такие как выпрямление рабо-
чих частей кольцевого образца на начальной ста-
дии деформирования, могут вносить неясность в
трактовку типа разрушения: хрупкое или нехруп-
кое (вязкое). Поэтому необходимо обратиться к ко-
личественным результатам фрактографических ис-
следований изломов образцов после механиче-
ских испытаний и соотнести их с пластичностью
материала и параметрами гидридов.

На рис. 12 представлены графики зависимости
пластичности материала всех исследованных об-
разцов от выбранных ранее макро- и микропара-
метров излома: ΔS/S0 и (Δs/s)хруп соответственно.

Рис. 10. Разрушенный в ходе механических испыта-
ний образец после эксперимента по переориентации
гидридов при максимальном напряжении 140 МПа.

200 мкм

Рис. 11. Зависимость доли сквозных гидридов от ко-
эффициента ориентации Fn.
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Из рис. 12 видно, что несмотря на имеющийся
разброс результатов и в первом и во втором случае
можно говорить о наличии корреляции между ве-
личиной δ и соответствующим параметром изло-
ма. Для параметра (ΔS/S0) в рассматриваемом диа-
пазоне зависимость линейная. При относительном
удлинении менее 18% доля хрупкой составляющей
излома составляет более 70% (рис. 12б), т.е. на по-
верхности излома преобладает хрупкая составля-
ющая. Например, для некоторого числа образ-
цов, данные для которых приведены на рис. 12б,
излом определенно хрупкий ((Δs/s)хруп > 0.9), а δ
лежит в диапазоне 15–20%. Таким образом, при
испытании кольцевых образцов из циркониевых
сплавов обосновано утверждать, что произошло
именно хрупкое разрушение можно только на ос-
нове фрактографии, а отнюдь не по низкому (или
нулевому) значению общего относительного удли-
нения δ, определяемому по отсутствию участка
пластической деформации в верхней части ма-
шинной диаграммы.

На рис. 13 представлены зависимости коэффи-
циента ориентации гидридов Fn и доли сквозных
связанных гидридов β от микропараметра (Δs/s)хруп,
характеризующего тип излома.

Кроме уже описанных выше характерных осо-
бенностей подобных зависимостей из рис. 13, яв-
ным образом следует, что второй рассматриваемый
коэффициент (β) также не подходит в качестве ко-
личественного параметра, характеризующего не
только гидриды, но и механические свойства ма-
териала в целом, т.е. необходим другой – более
подходящий параметр.

Поскольку в ряде рассмотренных образцов да-
же в отсутствии сквозных связанных гидридов, на
металлографическом шлифе наблюдаются участ-

ки, где имеются небольшие разрывы между со-
седними протяженными гидридами, которые при
прохождении трещины не будут являться препят-
ствием для ее распространения (рис. 14), в данной
работе также был рассмотрен параметр связности
гидридов (аналогичный параметру НСС [6, 8]). Па-
раметр связности γ рассчитывается как отноше-
ние суммы расстояний от внутренней поверхно-
сти образца до конечной точки связанного гидри-
да (фиолетовые линии на рис. 14) и от наружной
поверхности образца до конечной точки связан-
ного гидрида (синие линии на рис. 14) к толщине
трубчатого образца.

На рис. 15 приведена зависимость коэффици-
ента связности гидридов γ от микропараметра
(Δs/s)хруп, характеризующего тип излома. Видно,
что в целом для параметра γ наблюдается лучшая
корреляция с характером излома: доля хрупкой со-
ставляющей превышает 70% при параметре связно-
сти гидридов более 0.5. Однако, данный коэффи-
циент тоже имеет свои недостатки. Например,
группа точек на рис. 15 в диапазоне значений пара-
метров (Δs/s)хруп ⸦ [0.8, 1.0] и γ ⸦ [0.4, 0.65] явно со-
ответствует случаю, когда сплошной гидридной
структуры от стенки до стенки нет, но присут-
ствуют две (или несколько) близко расположен-
ных протяженных структур, которые дают тот же
эффект по снижению пластичности материала,
который дала бы сплошная структура. Таким обра-
зом, можно заключить, что использование данного
параметра позволяет с большей вероятностью про-
гнозировать хрупкое разрушение при механиче-
ских испытаниях, по сравнению с применением
анализа на основе коэффициента ориентации
гидридов Fn. Однако, очевидно необходимо даль-
нейшее развитие коэффициентов, характеризую-

Рис. 13. Зависимости характеристик сетки гидридов от микропараметра излома.
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щих структуру гидридов, для получения более до-
стоверных результатов. Возможно внедрение ко-
эффициента RHCM45 [8], либо его
модификации, в дальнейшем позволит решить
эту задачу.

4. ОЦЕНКА ПОРОГОВОГО НАПРЯЖЕНИЯ 
РАЗРУШЕНИЯ ПРИПОВЕРХНОСТНОГО 

РАДИАЛЬНОГО ГИДРИДА
Как было показано в предыдущем разделе, хруп-

кое разрушение кольцевых образцов в присутствии
радиальных гидридов начинается с внутренней по-
верхности, причем трещина распространяется сту-
пенчато по гидридной сетке. Таким образом, важ-
ным параметром, характеризующим условия за-
рождения первичной трещины, является окружное
растягивающее напряжение на внутренней по-

верхности рабочей части образца, при котором
разрушается приповерхностный радиальный гид-
рид. В предположении, что распространение тре-
щины начинается с разрыва приповерхностного
радиального гидрида, это напряжение соответ-
ствует его прочности. Для оценки этой величины с
помощью программного комплекса MSC MARC в
соответствии с процедурой, описанной в [11], бы-
ла рассчитана зависимость окружных растягива-
ющих напряжений на внутренней поверхности
рабочей части образца σs от силы F, приложенной
к захватам испытательной машины (рис. 16) и сопо-
ставлена с координатами конечных точек на ма-
шинных диаграммах растяжения образцов, раз-
рушившихся хрупко в ходе кратковременных меха-
нических испытаний при комнатной температуре
(вертикальные линии на рис. 16). Таким образом, с

Рис. 14. Схема для определения параметра связности гидридов.

300 мкм

Рис. 15. Зависимость коэффициента связности гидридов от микропараметра излома.
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учетом расчетной погрешности ~30 МПа и разброса
определенных по графику (рис. 16) значений
получаем оценку порогового напряжения разру-
шения приповерхностного радиального гидрида:
590 ± 40 МПа.

ЗАКЛЮЧЕНИЕ

Исследована зависимость мех. свойств труб из
модельного циркониевого сплава системы леги-
рования Zr–Nb–Sn–Fe от ориентации гидридов.
Проведены механические испытания и фрактогра-
фия изломов. Показано, что наличие даже единич-
ных протяженных гидридов радиальной ориента-
ции существенно снижает пластичность материала.

Предложена методика анализа изломов на
макро- и микроуровне, позволяющая рассчиты-
вать количественные характеристики излома и с
их помощью классифицировать излом как хруп-
кий или вязкий.

Показано, что применяемый по умолчанию
при анализе металлографических снимков образ-
цов труб из циркониевых сплавов с гидридами ко-
эффициент ориентации гидридов Fn плохо корре-
лирует с реальным характером разрушения. На-
блюдаются случаи, когда при низких значениях
Fn порядка 0.3 (допускаемых требованиями к из-

делиям) при соответствующих нагрузках наблю-
дается хрупкое разрушение.

Протестированы другие коэффициенты, харак-
теризующие ориентацию гидридов: доля сплошных
связанных гидридов в сечении трубы и коэффи-
циент связности гидридов. Показано, что наблю-
дается хорошая корреляция коэффициента связ-
ности гидридов со снижением пластичности мате-
риала. Однако, он также имеет недостатки, поэтому
необходимо проводить работы по разработке но-
вых коэффициентов, учитывающих возможные пу-
ти распространения трещин в металле с гидридами.

Показано, что для достоверной оценки харак-
тера разрушения при испытаниях кольцевых об-
разцов необходимо использовать фрактографи-
ческие методы.

Полученные результаты могут быть примене-
ны к трубам оболочек твэлов и направляющих ка-
налов ТВС из штатных отечественных цирконие-
вых сплавов.
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Рис. 16. Зависимость окружных растягивающих напряжений на внутренней поверхности рабочей части образца от си-
лы на захватах испытательной машины.

660

640

620

600

580

560

540

520

500

480

460

440

0 200 400 600 800 1000 1200 1400 1600 1800 2000

σs, МПа

F, H



454

ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ  том 16  № 4  2025

САБУРОВ и др.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES
1. Douglass D.L. The Metallurgy of Zirconium. Atomic

Energy Review. 1971. Vienna: IAEA.
2. Займовский А.С., Никулина А.В., Решетников Н.Г.

Циркониевые сплавы в атомной энергетике. 1981.
Москва: Энергоиздат.

3. Li M., Zhou X., Yang H., et al. // Scrip. Mater. 2018.
V. 143. P. 149. 
https://doi.org/10.1016/j.scriptamat.2017.03.001

4. Pan G., Mueller A.J., Limbäck M., et al. Advanced PWR
Cladding Development through Extensive In-Reactor
Testing in Zirconium in the Nuclear Industry: 20th Int.
Symp. Yagnik S.K., Preuss M. (Eds.) 2023. West Con-
shohocken: ASTM International. 
https://doi.org/10.1520/stp164520220053

5. Плясов А.А., Федоров А.В., Сабуров Н.С. и др. //
Ядерн. физ. инжинир. 2023. Т. 14 (1). С. 12. 
https://doi.org/10.56304/S2079562922030368
[Plyasov A.A., Fedotov A.V., Saburov N.S., et al. // Phys.
At. Nucl. 2022. V. 85 (11). P. 1808. 
https://doi.org/10.1134/s1063778822110060].

6. Плясов А.А., Новиков Н.Н., Девятко Ю.Н. // Ядерн.
физ. инжинир. 2019. Т. 10 (3). С. 243.

https://doi.org/10.1134/S2079562919020155
[Plyasov A.A., Novikov V.V., Devyatko Yu.N. // Phys. At.
Nucl. 2020. V. 83 (10). P. 1407. 
https://doi.org/10.1134/s1063778820090197].

7. Motta A.T., Capulongo L., Chen L.-Q., et al. // J. Nucl.
Mater. 2019. V. 518. P. 440. 
https://doi.org/10.1016/j.jnucmat.2019.02.042

8. Simon P.-C.A., Frank C., Chen L.Q., et al. // J. Nucl.
Mater. 2021. V. 547. P. 152817. 
https://doi.org/10.1016/j.jnucmat.2021.152817

9. Hull D. Fractography: Observing, Measuring and Inter-
preting Fracture Surface Topography. 1999. Cam-
bridge: Cambrige Univ.

10. Domizzi G., Lanzani L., Coronel P. et al. // J. Nucl. Ma-
ter. 1997. V. 246. P. 247. 
https://doi.org/10.1016/s0022-3115(97)00147-5

11. Плясов А.А., Сабуров Н.С., Бекренев С.А. и др. //
Ядерн. физ. инжинир. 2024. Т. 15 (5). С. 434.
https://doi.org/10.56304/S2079562924050385
[Plyasov A.A., Saburov N.S., Bekrenev S.A., et al. //
Phys. At. Nucl. 2023. V. 86 (12). P. 2604. 
https://doi.org/10.1134/s1063778823120062].

Fracture Parameters and Plasticity of the Zr–Nb–Sn–Fe Tubes 
with Different Hydrides Orientations during the Mechanical Testing
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Abstract—The results for mechanical testing and fractography of the ring samples, made of the experimental Zr–Nb–
Sn–Fe alloy, are presented. The most reliable macro- and micro- parameters to quantify the fracture surfaces
are defined. The correlations of some metrics for hydrides orientation with fracture parameters are investi-
gated. The advantages and disadvantages of individual metrics are revealed. Threshold value for the near-sur-
face radial hydride fracture at room temperature is obtained.
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