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Изучены свойства диагностического пучка ионов таллия (Tl+) в зависимости от параметров ионно-
оптической системы инжектора диагностики плазмы зондированием пучком тяжелых ионов. Пока-
зана возможность получения как квазипараллельных, так и сходящихся пучков с фокусным рассто-
янием более 4 м, необходимых для создания диагностики для токамака Т-15МД. Проведено сравне-
ние экспериментальных данных с результатами компьютерного моделирования пучка в инжекторе.
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ВВЕДЕНИЕ
Зондирование плазмы пучком тяжелых ионов

(ЗПТИ) – уникальная диагностика, позволяющая
проводить прямые локальные измерения электри-
ческого потенциала высокотемпературной плазмы
по всему сечению плазменного шнура [1]. Кроме
этого, диагностика позволяет одновременно из-
мерять колебания потенциала и плотности плаз-
мы, а также полоидального магнитного поля [2,
3]. Многоканальная версия диагностики позво-
ляет измерять такие параметры как скорость вра-
щения турбулентности и турбулентный поток ча-
стиц в основной плазме, что имеет важное значение
для проведения исследований физики плазмы с
магнитным удержанием [4]. В настоящее время
разрабатывается проект диагностики для токама-
ка Т-15МД [5, 6].

Принцип работы диагностики заключается в
следующем. При пролете пучка зондирующих ча-
стиц через плазму происходит их вторичная иони-
зация по всей длине первичной траектории (рис. 1).
При ионизации энергия ионов меняется на вели-
чину электрического потенциала плазмы в обла-
сти наблюдения. Пучок вторичных ионов, вы-
шедший из области наблюдения (SV), проходит
через вторичный ионопровод и попадает в энер-

гетический анализатор, где определяется энергия
пучка. На выходе из анализатора расположен по-
зиционно-чувствительный пластинчатый детек-
тор, регистрирующий ток и положение вторично-
го пучка по двум координатам. Предварительные
оценки показывают, что ослабление пучка при про-
лете сквозь плазму токамака Т-15МД может дости-
гать значений Idet/I0 ~ 10–6–10–7 в режимах с высо-
кой плотностью 5 ⋅ 1019 м–3 и магнитным полем
BT.= 1.5 Тл [7] Для зондирования плазмы токама-
ка Т-15МД ионный пучок должен иметь интен-
сивность более 200 мкА и фокусное расстояние в
диапазоне 3–5 м [5, 8]. Чтобы максимизировать ток
вторичного пучка, попадающего на детектор, необ-
ходимо точно фокусировать пучок в точке измере-
ния в течение время эксперимента на токамаке. Это
позволит повысить соотношение сигнал/шум из-
меряемого сигнала, и, следовательно, диагностиче-
ские возможности ЗПТИ. Работа организована
следующим образом: в первой части приводится
описание высоковольтного стенда ЗПТИ, на ко-
тором проводились измерения. Далее представ-
лена схема эксперимента по измерению фокусно-
го расстояния и полного тока пучка в зависимо-
сти от параметров ионно-оптической системы. В
третьей части приводятся и обсуждаются полу-
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ченные в эксперименте результаты. Далее прово-
дится сравнение результатов эксперимента с чис-
ленной моделью, построенной с помощью про-
граммного модуля HIBP-SOLVER. В Заключении
формулируются основные выводы.

ВЫСОКОВОЛЬТНЫЙ СТЕНД ЗПТИ
Эксперименты по получению длиннофокус-

ных пучков проводятся на высоковольтном стен-

де ЗПТИ [9]. Стенд расположен на диагностиче-
ской платформе токамака Т-10. Он состоит из вы-
соковольтной системы питания, инжектора ЗПТИ,
вакуумной пролетной камеры, набора из 4 прово-
лочных датчиков и цилиндра Фарадея (рис. 2).
Ключевым элементом инжектора ЗПТИ является
эмиттерно-экстракторный блок (рис. 3). Он вклю-
чает в себя нагревную вольфрамовую спираль,
твердотельный ионный источник и экстрактор-
ный блок [10]. Конструкция эмиттерного блока
позволяет быстро снимать его с инжектора для за-
мены ионного эмиттера.

Эмиттер представляет собой твердотельную
цеолитовую матрицу с ионами таллия Tl+, раство-
ренными в ней методом ионного замещения [11].
Полученный в процессе замещения порошок за-
пекается в вольфрамовой чашечке при плавно ко-
леблющейся температуре. В результате получает-
ся твердый субстрат сероватого оттенка. Термо-
ионные эмиттеры отличаются простотой
эксплуатации, высокой емкостью ионов рабочего
тела и низким разбросом энергии (0.1–1 эВ).

СХЕМА ЭКСПЕРИМЕНТА

Интенсивность и угловая расходимость пучка
определяются параметрами ионно-оптической
системы (рис. 4). Интенсивность пучка зависит
от мощности нагрева эмиттера Pfil и вытягиваю-
щего напряжения Uextr, а фокусное расстояние – от

Рис. 1. Принципиальная схема ЗПТИ. Чёрная кривая –
первичный пучок, серая сплошная – вторичный пучок,
попавший в анализатор. Пунктир – веер вторичных
траекторий. SV − область наблюдения, BT −
тороидальное магнитное поле
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Рис. 2. Фотография высоковольтного стенда ЗПТИ.
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комбинации вытягивающего, фокусирующего Ufoc
и ускоряющего Ubeam напряжений. Ускоряющее на-
пряжение определяет также энергию ионов пучка.

Для определения положения точки фокуса на
высоковольтном стенде используются три прово-
лочных датчика (рис. 5), расположенных после-
довательно вдоль оси пролетной камеры стенда.
При отклонении пучка от оси электрическим по-
лем отклоняющих пластин, он попадает на про-

волоки датчиков, возбуждая в них ток. Диаметр
пучка определяется по углу отклонения пучка и
расстоянию между проволоками:

По данным о диаметре пучка в трех и более
точках вдоль оси макета устанавливается его рас-
ходимость и положение фокуса.

−
= ⋅peak

beam
1 2

70 мм.
w

d
L

Рис. 3. Эмиттерно-экстракторный блок инжектора ЗПТИ. Слева: внешний вид; справа: эскиз. Посередине изображен
термоионный эмиттер таллия Tl+.
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Рис. 4. Схема ионно-оптической системы инжектора ЗПТИ.
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Полный ток пучка измеряется цилиндром Фа-
радея. Он обеспечивает прямые измерения тока
(рис. 6). Кроме того, ток пучка можно оценить по
току нагрузки высоковольтного источника (рис. 7),
а также интегрированием сигнала тока пучка на
проволочных датчиках (рис. 8) при изменении
сканирующего напряжения Uscan.

ЗАВИСИМОСТЬ СВОЙСТВ ПУЧКА 
ОТ ПАРАМЕТРОВ ИОННО-ОПТИЧЕСКОЙ 

СИСТЕМЫ
В работе исследуется зависимость свойств пучка

от напряжений на электродах ионно-оптической

системы макета инжектора ЗПТИ. В проведен-
ных экспериментах параметры ионно-оптиче-
ской системы менялись в следующих диапазонах:

• Ubeam = 120–240 кВ, шаг по энергии ΔE = 30 кВ
• Pfil = 26–45 Вт, шаг по мощности ΔP = 5 Вт
• Ufoc = –Ubeam/48, –Ubeam/24
• Uextr = 0–2 кВ, шаг по вытягивающему на-

пряжению ΔU = 100 В.
Эти четыре параметра должны меняться неза-

висимо. Настоящая работа выполнена в условиях
отсутствия независимого источника фокусирую-
щего напряжения, поэтому Ufoc задавалось как до-

Рис. 5. Схема эксперимента на стенде ЗПТИ. Пучок отклоняется от своей оси с помощью отклоняющих пластин и по-
падает на проволоки датчиков. Сигналы тока с проволок позволяют определить диаметр пучка. Цилиндр Фарадея из-
меряет полный ток пучка.
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Рис. 6. Измерения тока пучка с помощью цилиндра
Фарадея.
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ля от высокого напряжения Ubeam. Фокусирую-
щий электрод был соединен со вторым кольцом
линейного ускорителя, поэтому в работе рассмот-
рены два значения его потенциала, равные
‒1/48Ubeam и –1/24Ubeam. Все остальные параметры
задавались независимо. Ufoc и Uextr задавались отно-
сительно высокого напряжения ускорителя Ubeam.

С помощью проволочных датчиков была изу-
чена зависимость профиля тока пучка от вытяги-
вающего напряжения (рис. 9). Показано, что с ро-

стом Uextr ток пучка увеличивается, но вместе с
тем профиль пучка теряет гауссову форму. Опти-
мальное значение Uextr, при котором сохраняется
гауссова форма профиля, а ток максимален, со-
ставляет –0.9…–1 кВ.

Огибающая поверхность ионного пучка, сво-
бодно летящего по камере от ускорителя до ци-
линдра Фарадея, имеет форму гиперболоида. По-
ложением фокуса пучка будем считать положение
точки “перетяжки”, в которой диаметр пучка ми-
нимален. Поскольку интересующая нас область
фокусных расстояний находится в дальней части
вакуумной камеры, для определения фокусного
расстояния достаточно линейной аппроксима-
ции расходимости пучка. Такую расходимость
можно определить как r' = dr/dz, где r' – коэффи-
циент наклона прямой, а z – координата вдоль
оси пучка (рис. 10). Таким образом, по знаку r'
можно определить, сходится (r' < 0) или расходит-
ся (r' > 0) пучок в интересующей нас области. Если
r' ~ 0, пучок можно назвать квазипараллельным.

Для определения зависимости расходимости
пучка от параметров ИОС было проведено пол-
ное сканирование по области изменения всех че-
тырех параметров ИОС: Ubeam, Pfil, Ufoc Uextr. На
рис. 11 приведены графики зависимости расходи-
мости пучка от Uextr при различных параметрах
ИОС для потенциала Ufoc = –Ubeam/48.

Видно, что при этом значении фокусирующе-
го напряжения расходимость монотонно растет с
увеличением Uextr, и все полученные пучки полу-
чаются строго расходящимися. Это говорит о
том, что такое Ufoc слишком мало.

Рис. 8. Сигнал тока на проволочном датчике. Инте-
грал от функции зависимости тока от напряжения
сканирования Uscan, или плотности тока ионов в пуч-
ке (заштрихованная область) равен полному току
пучка
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На рис. 12 приведены примеры результатов
измерений с Ufoc = –Ubeam/24 для энергий 180 и
210 кэВ. Рисунок показывает, что с увеличением
Uextr расходимость пучка уменьшается, и, начиная
с некоторого значения, пучок начинает сходить-
ся. Это видно на графике зависимости r'(Uextr, Pfil)
для пучка с энергией 180 кэВ. На аналогичном
графике для энергии 210 кэВ видно, что получен-
ные пучки являются расходящимися, а зависи-
мость имеет локальный минимум в области оп-
тимального Uextr = 1.0–1.5 кВ в зависимости от
мощности нагрева спирали. Поскольку Ufoc в
этих экспериментах оставалось неизменным для

каждого значения энергии, по-видимому, значе-
ние Ufoc = –Ubeam/24 было неоптимальным для энер-
гий более 180 кэВ. Это предположение предстоит
проверить в эксперименте с независимым источни-
ком фокусирующего напряжения. Тем не менее,
в результате экспериментов удалось показать, что
сходящиеся пучки могут быть получены при раз-
ных комбинациях Ebeam, Uextr и Pfil, см. рис. 12а.

Особенно наглядно наличие экстремума рас-
ходимости видно на графиках зависимости диа-
метра пучка от параметров ИОС на значительном
расстоянии от выхода из инжектора (рис. 13). На
этом рисунке представлены сканы по мощности
Pfil (а) и по энергии Ebeam (б) зависимости диамет-
ра пучка на z = 5 м от инжектора. Это расстояние
соответствует положению цилиндра Фарадея в
пролетной камере стенда и примерно соответ-
ствует положению входной апертуры вторичного
ионопровода в проекте диагностики ЗПТИ тока-
мака Т-15МД. На обоих графиках видно, что ми-
нимальный диаметр пучка находится в области
оптимального Uextr ~ –1 кВ. Минимальный диаметр
пучка при разных энергиях составил от 8 до 15 мм
при мощности Pfil = 30 Вт, а при энергии 210 кэВ –
от 11 до 20 мм при мощности нагрева эмиттера от
26 до 45 Вт.

В табл. 1 представлены наилучшие варианты
пучков, полученных в рассмотренной области па-
раметров. Минимальный размер и самая низкая
расходимость (первая строка) составили 8 мм и
‒0.15 мм/м соответственно. Наибольший полу-
ченный ток – 15 мкА (вторая строка). В третьей и
четвертой строках представлены оптимальные пуч-
ки, полученные при высоких энергиях 210 и 240 кВ.
Пучок с энергией 240 кВ обладает наилучшей ком-
бинацией тока, расходимости и минимального диа-
метра в области измерений. Энергия этих пучков
лежит в области, пригодной для измерений в плаз-
ме Т-15МД в режимах BT = 1–1.5 Тл, Ipl = 1 МА.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ 
ПАРАМЕТРОВ ПУЧКА

С помощью программного модуля HIBP-SOLV-
ER была построена численная модель движения ча-
стиц пучка в геометрических условиях стенда,
учитывающая параметры и геометрию ИОС [12].

Рис. 10. Примеры расчета расходимости пучка по из-
мерению его радиуса rbeam на проволочных датчиках:
(а) расходящийся пучок, (б) сходящийся пучок,
(в) квазипараллельный пучок.
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Таблица 1. Оптимальные параметры пучков, полученных в эксперименте на высоковольтном стенде для различ-
ных энергий

Ebeam, кэВ Ibeam, мкА dz=5, мм r', мм/м Uextr, кВ Pfil, Вт

180 5 8 –0.15 –1.1 30
210 15 35 1 –2 45
210 8 19 1.5 –0.9 45
240 6 13 0.5 –1 30
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Модель основана на решении уравнения движе-
ния заряженной частицы в электрическом поле
инжектора. Она позволяет рассчитывать фокус-
ное расстояние пучка и его расходимость. Экспе-
риментальные результаты используются для ва-
лидации модели (рис. 14). На текущем этапе разра-
ботки модели полного согласия между расчетом и
экспериментом не достигнуто, хотя в некоторых
случаях модель показывает результаты, качествен-
но согласующиеся с экспериментальными.

ЗАКЛЮЧЕНИЕ

На высоковольтном стенде показана возмож-
ность получения квазипараллельных ионных
пучков (Ebeam = 180 кВ), а также пучков, хорошо
сфокусированных (d ≤ 15 мм) на расстоянии 5 м,
что превышает расстояние до точки измерения в
условиях Т-15МД (в среднем 4 м). Полученные
пучки имеют энергию до 240 кэВ, которая соот-
ветствует интервалу измерений в плазме Т-15МД
с полем BT 1–1.5 Тл. Результаты моделирования

Рис. 11. зависимость расходимости пучка r' = dr/dz от Uextr при различных параметрах ИОС для фокусирующего на-
пряжения Ufoc = –Ubeam/48.'
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Рис. 12. Зависимость расходимости пучка от Uextr и Pfil при Ebeam = 180 кэВ (а) и 210 кэВ (б). С увеличением Uextr рас-
ходимость пучка уменьшается, при энергии 180 кэВ начиная с некоторого значения Uextr пучок начинает сходиться.
При энергии 210 кэВ фокусирующее напряжение не является оптимальным, из-за этого все полученные пучки явля-
ются слаборасходящимися.
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ВАДИМОВ и др.

пучка показывают качественное совпадение с
экспериментальными результатами, численная
модель требует дальнейшего уточнения.
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Achievement of Long-Focus Ion Beams on the High Voltage Test Bench 
for Heavy Ion Beam Probe Diagnostics on the T-15MD Tokamak
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Abstract—The dependence of the focal length of the thallium (Tl+) ion beam on the parameters of the ion-
optical system of the injector for heavy ion beam probe plasma diagnostics has been studied. The possibility of ob-
taining quasi-parallel beams and converging beams with a focal length of more than 4 m has been shown. Experi-
mental results are compared with the results of computer modeling of the beam trajectory in the injector.
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