ВЗАИМОДЕЙСТВИЕ ПЛАЗМЫ, ПУЧКОВ ЧАСТИЦ И ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

УЛК 539.126.4

ИЗУЧЕНИЕ НОВЫХ РАСПАДОВ В⁺ МЕЗОНОВ С ЧАРМОНИЕМ И ЛЕГКИМИ АДРОНАМИ В ЭКСПЕРИМЕНТЕ LHCB

© 2022 г. А. В. Егорычев^а, Д. Ю. Перейма^{а, *}

^аНациональный исследовательский центр "Курчатовский институт", Москва, 123182 Россия *E-mail: Dmitrii.Pereima@cern.ch
Поступила в редакцию 23.02.2022 г.
После доработки 25.02.2022 г.
Принята к публикации 28.02.2022 г.

С использованием данных протон-протонных столкновений, набранных экспериментом LHCb и соответствующих интегральной светимости $9 \, \varphi 6^{-1}$, были обнаружены несколько новых мод распада B_c^+ мезонов на чармоний и три легких заряженных адрона. В частности, обнаружены следующие каналы $B_c^+ \to \psi(2S)\pi^+\pi^-\pi^+$, $B_c^+ \to (\psi(2S) \to J/\psi\pi^+\pi^-)\pi^+$, $B_c^+ \to J/\psi K^+\pi^-\pi^+$ и $B_c^+ \to J/\psi K^+K^-K^+$. Получено первое экспериментальное свидетельство существования распада $B_c^+ \to \psi(2S)K^+K^-\pi^+$. Измерены вероятности обнаруженных распадов относительно нормировочных каналов с большой статистикой.

Ключевые слова: прелестные адроны, чармоний, спектроскопия, резонанс, анализ данных **DOI:** 10.56304/S2079562922030125

1. ВВЕДЕНИЕ

Частица B_c^+ является уникальным состоянием, состоящим из двух тяжелых кварков разных ароматов. Распад системы, состоящей из кварков ($\bar{b}c$), происходит через механизм слабого взаимодействия, когда один из кварков осуществляет распад, а второй является кварком—спектратором, либо происходит процесс аннигиляции двух кварков с участием виртуального W^\pm -бозона [1—3]. Эксперименты на Большом адронном коллайдере открыли новую эру для исследований B_c^+ мезонов. Несмотря на то, что B_c^+ мезон был открыт более 20 лет назад в эксперименте CDF [4, 5], до сих пор было обнаружено всего несколько каналов распада этой частицы.

В настоящей работе представлено изучение новых распадов B_c^+ мезонов в конечные состояния $B_c^\pm \to \psi 3h^\pm$ (где $\psi -$ это J/ψ или $\psi (2S)$ мезоны, а h- легкие адроны, каоны и пионы), такие как: $B_c^+ \to \psi (2S)\pi^+\pi^-\pi^+, \ B_c^+ \to (\psi (2S) \to J/\psi \pi^+\pi^-)\pi^+, \ B_c^+ \to J/\psi K^+\pi^-\pi^+, \ B_c^+ \to \psi (2S)K^+K^-\pi^+ \ u \ B_c^+ \to J/\psi K^+K^-K^+.$ Приведены результаты измерений парциальных ширин обнаруженных распадов, относительно нормировочных каналов $B_c^+ \to J/\psi \pi^+\pi^-\pi^+$ и $B_c^+ \to J/\psi K^+K^-\pi^+$. Восстановление J/ψ и $\psi (2S)$ мезонов выполнялось с использованием следую-

щих мод распада: $J/\psi \to \mu^+\mu^-$, $\psi(2S) \to \mu^+\mu^-$ и $\psi(2S) \to J/\psi \pi^+\pi^-$. Анализ основан на данных протон—протонных столкновений, набранных спектрометром LHCb в период с 2011 по 2018 гг. и соответствующих интегральной светимости 9 фб $^{-1}$.

2. ОБНАРУЖЕНИЕ НОВЫХ РАСПАДОВ $B_c^\pm o \psi 3 h^\pm$

Число сигнальных событий для распадов $B_c^\pm \to \psi 3h^\pm$ определяется с использованием одновременной подгонки шести распределений по инвариантной массе для отобранных кандидатов $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+, B_c^+ \to \psi (2S) \pi^+ \pi^- \pi^+, B_c^+ \to (\psi (2S) \to J/\psi \pi^+ \pi^-) \pi^+, B_c^+ \to \psi (2S) \pi^+, B_c^+ \to J/\psi K^+ \pi^- \pi^+, B_c^+ \to J/\psi K^+ K^- \pi^+, B_c^+ \to \psi (2S) K^+ K^- \pi^+ \ u B_c^+ \to J/\psi K^+ K^- K^+. В канале применяется двумерная аппроксимация для распределений по инвариантной массе комбинаций <math>J/\psi \pi^+ \pi^- \pi^+$ в области известной массы B_c^+ мезона и $J/\psi \pi^+ \pi^-$ системы в интервале вокруг известной массы $\psi (2S)$ мезона.

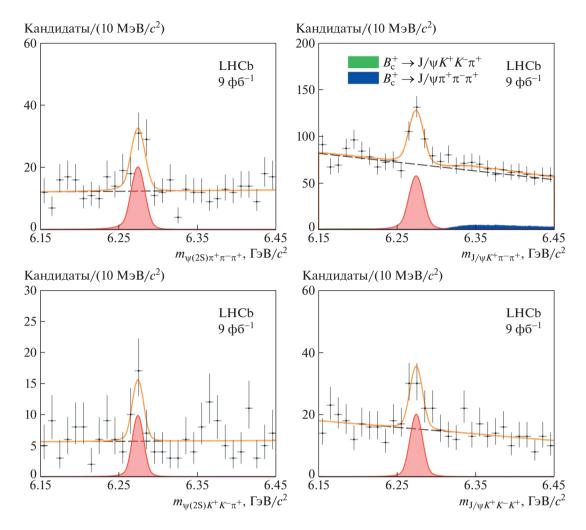
Одномерная модель подгонки состоит из двух компонентов. Сигнальный компонент для распадов $B_c^\pm \to \psi 3 h^\pm$ описывается с помощью модифицированной функции Гаусса [6], фоновый компонент для случайных $\psi 3 h^\pm$ комбинаций, моделируется с помощью полинома первой степени.

Распад	Выход сигнала		Значимость, σ
$B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$	2750 ± 69		_
$B_c^+ \to J/\psi K^+ K^- \pi^+$	686 ± 48		_
$B_c^+ \to J/\psi K^+ \pi^- \pi^+$	148 ± 22		7.8
$B_c^+ \to J/\psi K^+ K^- K^+$	43 ± 10		5.2
$B_c^+ \to \psi(2S)K^+K^-\pi^+$	19 ± 6		3.7
$B_c^+ \to \psi(2S)\pi^+\pi^-\pi^+$	49 ± 11		5.8
$B_c^+ \to (\psi(2S) \to J/\psi \pi^+ \pi^-) \pi^+$	54 ± 9		11.8
Положение сигнала, МэВ $/c^2$		Значение	
$m_{ m B_c^+}$		6274.14 ± 0.26	
$m_{\psi(2\mathrm{S})}$		3686.05 ± 0.01	

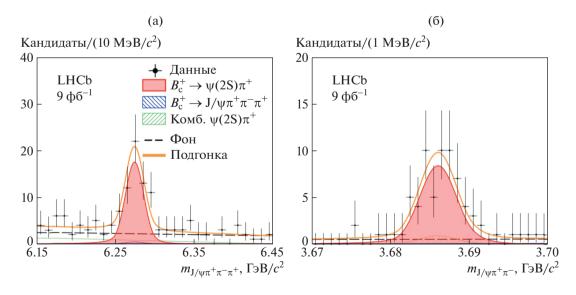
Таблица 1. Параметры подгонки распределений по инвариантной массе $B_c^{\pm} \to \psi 3h^{\pm}$ кандидатов, где $m_{B_c^{\pm}}$ и $m_{\mu\nu} = m_{\mu\nu} = m_{\mu\nu$

Двумерная модель аппроксимации данных для канала $B_c^+ \to (\psi(2S) \to J/\psi \pi^+ \pi^-) \pi^+$ состоит из четырех компонентов:

- 1. сигнальный компонент, описываемый модифицированной функцией Гаусса;
- 2. нерезонансный компонент от распадов $B_c^+ o J/\psi \pi^+ \pi^- \pi^+$ (без участия промежуточных $\psi(2S)$ состояний) моделируется как произведение сигнальной функции B_c^+ мезона и линейной функции в проекции по инвариантной массе $J/\psi \pi^+ \pi^-$ системы;
- 3. фоновый компонент за счет случайных комбинаций $\psi(2S)\pi^+$, образованных не от распадов B_c^+ мезонов, описывается как произведение сигнальной функции $\psi(2S)$ мезона и линейной функции в распределении по инвариантной массе комбинации $J/\psi\pi^+\pi^-\pi^+$, умноженной на функцию двухчастичного фазового объема;
- 4. фоновый компонент за счет случайных $J/\psi \pi^+\pi^-\pi^+$ комбинаций моделируется с использованием двумерной положительной линейной функции.


Модель для описания сигала от распада $B_c^+ \to J/\psi K^+\pi^-\pi^+$ содержит два дополнительных компонента, описывающих вклады от каналов $B_c^+ \to J/\psi K^+K^-\pi^+$ и $B_c^+ \to J/\psi \pi^+\pi^-\pi^+$, в которых каон ошибочно идентифицируется как пион или наоборот. Функции для описания таких вкладов получены из данных математического моделирования, а выходы сигналов зафиксированы к ожидаемому числу неверно идентифицированных событий.

Распределение по инвариантной массе, совместно с наложенной функцией подгонки для отобранных $B_c^+ o \psi(2S) \pi^+ \pi^- \pi^+, \ B_c^+ o J/\psi K^+ \pi^- \pi^+,$ $B_c^+ o \psi(2S) K^+ K^- \pi^+$ и $B_c^+ o J/\psi K^+ K^- \ K^+$ кандидатов представлено на рис. 1. Проекции двумерного распределения по инвариантным массам $J/\psi \pi^+\pi^-\pi^+$ и $J/\psi\pi^+\pi^-$ комбинаций в канале $B_c^+\to (\psi(2S)\to$ $\rightarrow J/\psi \pi^+\pi^-)\pi^+$ представлены на рис. 2. Статистическая значимость обнаруженных сигналов в величинах стандартных отклонений (σ) оценивается методом упрощенного моделирования данных, путем оценки вероятности флуктуации фона, большей или равной величине наблюдаемого сигнала. Параметры, определенные из результатов аппроксимации экспериментальных данных, а также статистические значимости обнаруженных сигналов приведены в табл. 1.


Отношения парциальных ширин (\Re^X_Y) для изучаемых распадов $B_c^+ \to X$ и $B_c^+ \to Y$ рассчитываются по формуле:

$$\mathcal{R}_{\mathbf{Y}}^{\mathbf{X}} = \frac{N_{\mathbf{X}}}{N_{\mathbf{Y}}} \times \frac{\epsilon_{\mathbf{Y}}}{\epsilon_{\mathbf{X}}},$$

где N — число сигнальных событий, а ϵ — эффективность восстановления соответствующего распада. Эффективности восстановления исследуемых распадов определяются из данных математического моделирования и калибровочных выборок данных, полученных с использованием каналов с большой статистикой.

Рис. 1. Распределения по инвариантной массе $B_c^\pm \to \psi 3h^\pm$ кандидатов с наложенными функциями подгонки.

Рис. 2. Проекции распределения по инвариантной массе комбинаций $J/\psi\pi^+\pi^-\pi^+$ (а) и $J/\psi\pi^+\pi^-$ (б) для отобранных $B_c^+ \to (\psi(2S) \to J/\psi\pi^+\pi^-)\pi^+$ кандидатов с наложенной функцией подгонки.

3. РЕЗУЛЬТАТЫ

С использованием данных протон-протонных столкновений, набранных спектрометром LHCb в период с 2011 по 2018 гг. и соответствующих интегральной светимости 9 фб $^{-1}$ были изучены новые распады $B_c^{\pm} \to \psi 3h^{\pm}$. Впервые обнаружены каналы $B_c^{+} \to \psi (2S)\pi^{+}\pi^{-}\pi^{+}$, $B_c^{+} \to J/\psi K^{+}\pi^{-}\pi^{+}$ и $B_c^{+} \to J/\psi K^{+}K^{-}$ К $^{+}$. Получено первое экспериментальное свидетельство существования распада $B_c^{+} \to \psi (2S)K^{+}K^{-}\pi^{+}$ со статистической значимостью 3.7 стандартных отклонений. Измерены вероятности обнаруженных распадов относительно нормировочных каналов, которые составили:

$$\mathcal{R}_{J/\psi K^{+}K^{-}K^{+}}^{J/\psi K^{+}K^{-}K^{+}} = (7.0 \pm 1.8 \pm 0.2) \cdot 10^{-2},$$

$$\mathcal{R}_{J/\psi K^{+}K^{-}\pi^{+}}^{J/\psi K^{+}\pi^{-}\pi^{+}} = 0.35 \pm 0.06 \pm 0.01,$$

$$\mathcal{R}_{J/\psi K^{+}K^{-}\pi^{+}}^{\psi(2S)K^{+}K^{-}\pi^{+}} = (3.7 \pm 1.2 \pm 0.1) \cdot 10^{-2},$$

$$\mathcal{R}_{J/\psi K^{+}K^{-}\pi^{+}}^{\psi(2S)\pi^{+}\pi^{-}\pi^{+}} = (1.9 \pm 0.4 \pm 0.1) \cdot 10^{-2},$$

$$\mathcal{R}_{J/\psi \pi^{+}\pi^{-}\pi^{+}}^{\psi(2S)\pi^{+}} = (3.5 \pm 0.6 \pm 0.2) \cdot 10^{-2},$$

$$\mathcal{R}_{J/\psi K^{+}K^{-}\pi^{+}}^{J/\psi K^{+}K^{-}\pi^{+}} = (18.5 \pm 1.3 \pm 0.6) \cdot 10^{-2},$$

где первая погрешность является статистической, а вторая систематической [7]. Полученные результаты демонстрируют хорошее согласие с теоретическими предсказаниями [8, 9] и данными, полученными из предыдущих исследований эксперимента LHCb, а также с результатами аналогичных измерений [10—17].

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Совета по грантам Президента Российской Федерации МК-894.2022.1.2.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- Bauer M., Stech B., Wirbel M. // Z. Phys. C. 1987. V. 34. P. 103.
- 2. Wirbel M. // Prog. Part. Nucl. Phys. 1988. V. 21. P. 33.
- Likhoded A.K., Luchinsky A.V. // Phys. Rev. D. 2020.
 V. 81. P. 014015; arXiv:0910.3089. 2009.
- 4. *Abe F. et al. (CDF Collab.)* // Phys. Rev. Lett. 1998. V. 81. P. 2432; arXiv:hep-ex/9805034. 1998.
- Abe F. et al. (CDF Collab.) // Phys. Rev. D. 1998. V. 58.
 P. 112004; arXiv:hep-ex/9804014. 1998.
- 6. Skwarnicki T. // PhD Thesis. 1986. Krakow: Inst. Nucl. Phys; Preprint. DESY-F31-86-02.
- 7. Aaij R. et al. (LHCb Collab.) // J. High Energy Phys. 2022. V. 2022. P. 065; arXiv:2111.03001, 2021.
- 8. Luchinsky A.V. // arXiv:1307.0953. 2013.
- 9. Likhoded A.K., Luchinsky A.V. // Phys. At. Nucl. 2013. V. 76. P. 787.
- Aaij R. et al. (LHCb Collab.) // Phys. Rev. Lett. 2012.
 V. 108. P. 251802; arXiv:1204.0079. 2012.
- Aaij R. et al. (LHCb Collab.) // Phys. Rev. D. 2015.
 V. 92. P. 072007; arXiv:1507.03516. 2015.
- Aaij R. et al. (LHCb Collab.) // J. High Energy Phys. 2013. V. 2013. P. 094; arXiv:1309.0587. 2013.
- Aaij R. et al. (LHCb Collab.) // J. High Energy Phys. 2016. V. 2016. P. 153; arXiv:1607.06823. 2016.
- 14. *Zyla P.A. et al. (Particle Data Group)* // Prog. Theor. Exp. Phys. 2020. V. 2020. P. 083C01.
- Aaij R. et al. (LHCb Collab.) // Phys. Rev. Lett. 2012.
 V. 108. P. 161801; arXiv:1201.4402. 2012.
- 16. *Aaij R. et al. (LHCb Collab.)* // Phys. Rev. D. 2013. V. 87. P. 092001; arXiv:1303.6861. 2013.
- 17. Aaij R. et al. (LHCb Collab.) // Phys. Rev. D. 2012. V. 86. P. 112005; arXiv:1211.1541. 2012.

Study of the New B_c^{\dagger} Meson Decays with Charmonium and Three Light Hadrons in the LHCb Experiment

A. V. Egorychev¹ and D. Yu. Pereima^{1, *}

¹National Research Centre "Kurchatov Institute", Moscow, 123182 Russia *e-mail: Dmitrii.Pereima@cern.ch

Received February 23, 2022; revised February 25, 2022; accepted February 28, 2022

Abstract—Using proton—proton collision data, collected by the LHCb experiment and corresponding to the integrated luminosity of 9 fb⁻¹, the several new B_c^+ decays to charmonium and three light charged hadrons are observed. In particular, following channels are observed $B_c^+ \to \psi(2S)\pi^+\pi^-\pi^+$, $B_c^+ \to (\psi(2S) \to J/\psi\pi^+\pi^-)\pi^+$, $B_c^+ \to J/\psi K^+\pi^-\pi^+$, and $B_c^+ \to J/\psi K^+K^-K^+$. The first evidence of the $B_c^+ \to \psi(2S)K^+K^-\pi^+$ decays is obtained. The branching fractions of these decays are measured with respect to the high-statistic normalization channels.

Keywords: beauty hadrons, charmonium, spectroscopy, resonance, data analysis