— УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ ДЛЯ ЯДЕРНЫХ ТЕХНОЛОГИЙ

УЛК 539.1.05

РАЗРАБОТКА СИСТЕМЫ АНАЛИЗА И ТРАНСПОРТИРОВКИ ПУЧКА СИЛЬНОТОЧНОГО ИНЖЕКТОРА МНОГОЗАРЯДНЫХ ИОНОВ НА БАЗЕ СВЕРХПРОВОДЯЩЕГО ЭЦР ИСТОЧНИКА ИОНОВ

© 2022 г. А. В. Зиятдинова^a, *, П. А. Федин^a, Т. В. Кулевой^a, А. А. Малышев^a, С. Л. Богомолов^b, А. А. Ефремов^b

^a Национальный исследовательский центр "Курчатовский институт", Москва, 123182 Россия ^b Объединенный институт ядерных исследований, Дубна, Московская обл., 141980 Россия *E-mail: bishazi@yandex.ru

Поступила в редакцию 30.12.2021 г. После доработки 30.12.2021 г. Принята к публикации 12.01.2022 г.

Работа посвящена разработке системы анализа и транспортировки пучка сильноточного инжектора многозарядных ионов на базе сверхпроводящего ЭЦР источника ионов, разрабатываемого в ОИЯИ в рамках программы исследования сверхтяжелых элементов. В работе описано моделирование динамики ионных пучков в разрабатываемой системе в приближении "идеальных" полей в оптических элементах тракта.

Ключевые слова: моделирование динамики, ионный пучок, ЭЦР источник

DOI: 10.56304/S2079562922030599

ВВЕДЕНИЕ

В Лаборатории ядерных реакций ОИЯИ развивается программа исследования сверхтяжелых элементов (СТЭ). Базовой установкой фабрики СТЭ является циклотрон ДЦ-280 [1]. Для генерации сильноточных пучков тяжелых ионов в качестве инжектора для данного ускорителя в ОИЯИ разрабатывается сверхпроводящий источник ионов типа ЭЦР (электронно-циклотронный резонанс) третьего поколения. Для инжекции пучка ионов в циклотрон необходимо разработать систему транспортировки и анализа пучков. Разработка концептуальной схемы инжектора основывается на моделировании динамики пучков тяжелых ионов. В работе представлены первые результаты такого моделирования.

1. ВЫБОР НАЧАЛЬНЫХ ДАННЫХ

Выбор начальных параметров для моделирования динамики пучков ионов $^{238}U^{34+}$ и $^{40}Ar^{8+}$ был основан на результатах работ [2, 3], в которых описаны измерения и моделирование пучка для работающих сегодня ЭЦР источников третьего поколения — SECRAL, SECRAL II. Нормализованный RMS эмиттанс пучков $^{238}U^{34+}$ и $^{40}Ar^{8+}$ для моделирования принят $0.3~\pi$ мм мрад. Напряжение экстракции 25~kB.

Для оценки эффективности сепарации использован метод одновременного моделирования двух пучков ионов с близкими значениями A/Z.

Предварительная схема компоновки канала транспортировки была выбрана на основе имеющихся элементов транспортных каналов [1-5]. Основные элементы канала транспортировки: соленоид, поворотный магнит, три квадрупольные линзы и ускорительная трубка. Размеры соленоида были выбраны на основе разработанного в ОИЯИ и хорошо себя зарекомендовавшего соленоида [6]. Поворотный магнит был выбран с углом поворота 90°, радиусом поворота 500 мм и углами скоса по 26° по аналогии с [4, 5]. Длина квадрупольных линз была определена из работы [4]. В качестве ускорительной трубки была выбрана трубка, выпускаемая фирмой NEC на предельную разность потенциалов 100 кВ [7]. Для обеспечения контроля за параметрами пучка в канале транспортировки предусмотрено два места для измерительных блоков. Один длиной 400 мм на выходе источника, и второй длиной 500 мм за поворотным магнитом. Также в канале предусмотрено пространство для установки вертикального корректора после магнита.

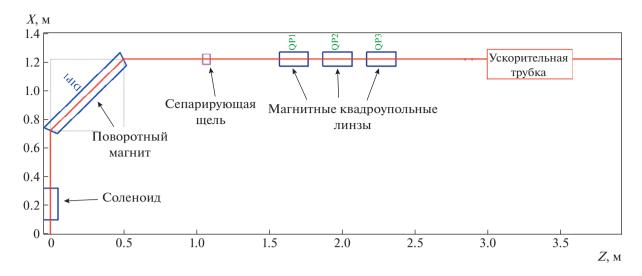
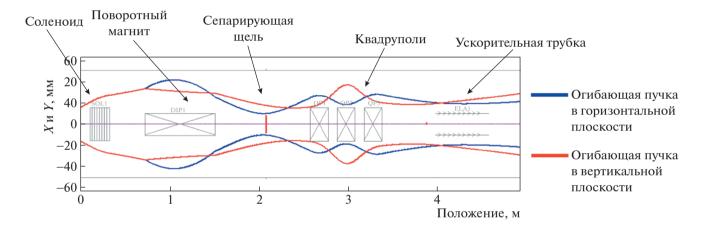
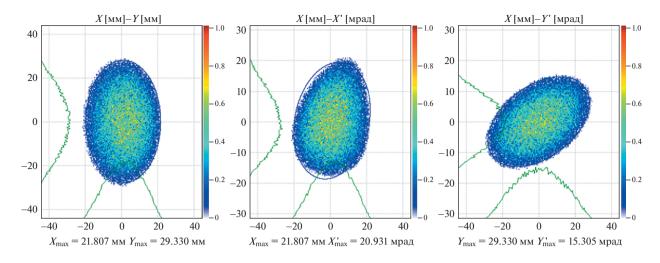



Рис. 1. Схема канала транспортировки, выбранная по результатам моделирования динамики пучка с нулевым током.

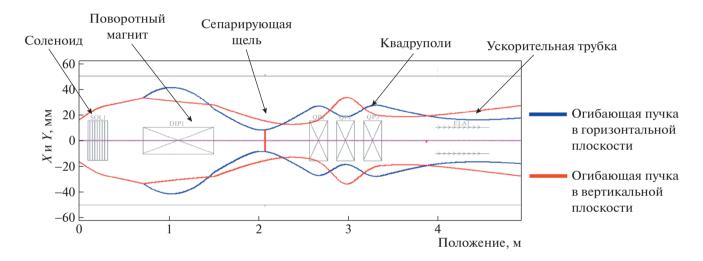
Рис. 2. Огибающие пучка ²³⁸U³⁴⁺ в канале.

2. МОДЕЛИРОВАНИЕ ДИНАМИКИ ПУЧКА С НУЛЕВЫМ ТОКОМ

На начальном этапе моделирование динамики пучка проводилось в идеальном приближении электромагнитных полей элементов транспортного канала и при наличии полной компенсации пространственного заряда (нулевой ток). На этом этапе определялось место расположения ключевых элементов канала анализа и транспортировки пучка и проводилась предварительная оптимизация их параметров.


При этом преследовалась цель обеспечить проводку пучка ионов $^{238}U^{34+}$ с минимальными потерями и максимально уменьшить примесную составляющую. В качестве примесного для моделирования рассматривался ион $^{238}U^{35+}$.

В результате проведенного моделирования сформирован канал, представленный на рис. 1. Сепарирующая щель находится на расстоянии

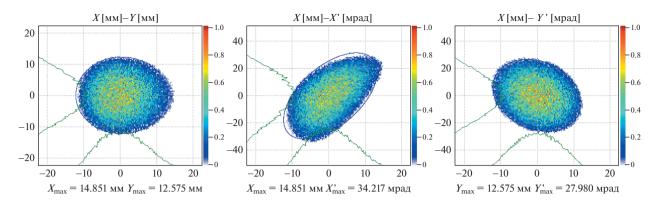

570 мм от магнита и имеет прямоугольную форму с размерами 25×100 мм. При этом основной пучок 238 U³⁴⁺ проходит сепарирующую щель без потерь, а примесный ион 238 U³⁵⁺ теряет на диафрагме 93% своей интенсивности. Полная сепарация (100% потеря примесного пучка 238 U³⁵⁺) достигается при уменьшении щели диафрагмы до 18 мм. Потери основного пучка в диафрагме при этом достигают 7%. На рис. 2 показаны огибающие пучка 238 U³⁴⁺ в канале. На рис. 3 показаны профиль и эмиттансы пучка 238 U³⁴⁺ на выходе из канала.

В табл. 1 приведены значения поля и градиента поля для магнитных элементов канала, использованных при моделировании динамики пучка ионов ²³⁸U³⁴⁺. Эффективная длина квадрупольных линз 200 мм. Эффективная длина соленоида 220 мм.

В разработанном канале проведено моделирование динамики опорного пучка $^{40}{\rm Ar}^{8+}$ и примес-

Рис. 3. Профиль и эмиттансы пучка 238 U $^{34+}$ на выходе из канала.

Рис. 4. Огибающие пучка 40 Ar $^{8+}$ в канале.


ного пучка 40 Ar $^{9+}$ с начальными данными на входе в канал, аналогичными 238 U $^{34+}$. Транспорт пучка ионов 40 Ar $^{8+}$ составил 100%. Потери примесного 40 Ar $^{9+}$, составили 100% еще до сепарирующей диафрагмы. На рис. 4 показаны огибающие пучка 40 Ar $^{8+}$ в канале. На рис. 5 показаны профиль и эмиттансы пучка 40 Ar $^{8+}$ на выходе из канала.

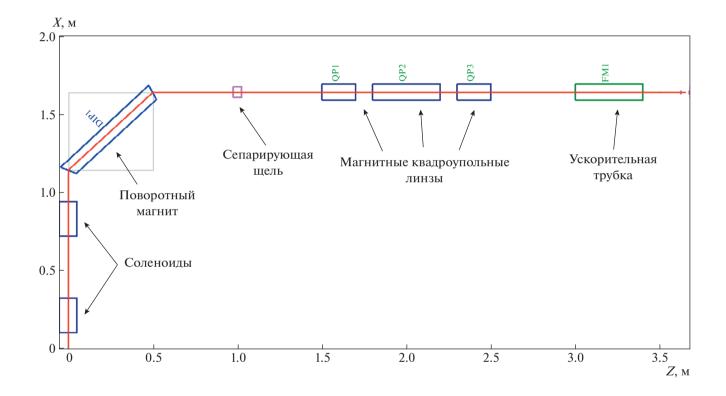
3. МОДЕЛИРОВАНИЕ ДИНАМИКИ С НЕНУЛЕВЫМ ТОКОМ

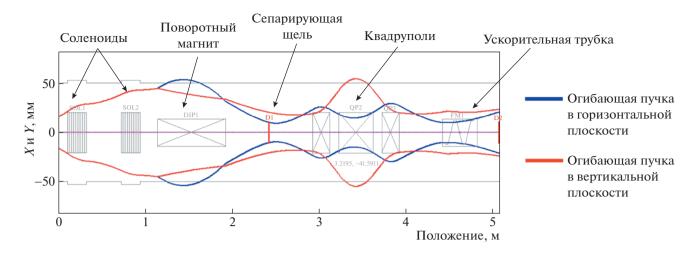
После определения расстановки элементов транспортной системы в приближении идеальных полей и при полной компенсации собственного заряда пучка проведено моделирование динамики пучка при условии, когда полная компенсация

Таблица 1. Значения поля и градиента поля для магнитных элементов канала, использованных при моделировании

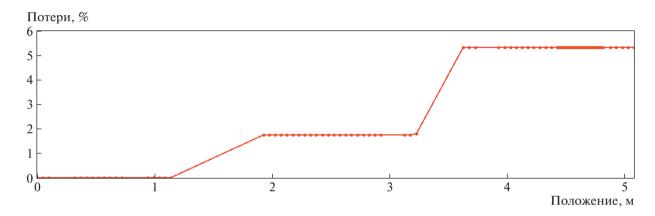
	Поле соленоида, Тл	Градиент первой линзы, Тл/м	Градиент второй линзы, Тл/м	Градиент третьей линзы, Тл/м
U_{238}^{34+}	0.3	0.97	-1.22	0.68
Ar_{40}^{8+}	0.254	0.822	-1.03	0.576

Рис. 5. Профиль и эмиттансы пучка 40 Ar $^{8+}$ на выходе из канала.




Рис. 6. Схема канала с двумя соленоидами перед поворотным магнитом.

пространственного заряда пучка не достигается. При этом моделирование в канале до поворотного магнита проводилось для единственного типа ионов, но с током 20 мА и компенсацией 70%. Также для учета потерь примесных ионов в поворотном магните использовано следующее приближение: на входе в поворотный магнит ток пучка падает до значения 1 мА (считаем, что это значение тока пучка ионов 238 U $^{34+}$, т.е. около 5% от общего тока всего пучка [3]).


При проведении моделирования динамики пучка $^{238}U^{34+}$ с неполной компенсацией собствен-

ного заряда не удается обеспечить полное прохождение пучка через транспортную систему с использованием единственного соленоида. Поэтому на этом участке был добавлен еще один соленоид. На рис. 6 приведена скорректированная схема канала с двумя соленоидами перед поворотным магнитом, полученная по результатам моделирования динамики пучка 238 U³⁴⁺. На рис. 7 показаны огибающие пучка 238 U³⁴⁺ в канале. На рис. 8 показан график потерь пучка 238 U³⁴⁺.

В табл. 2 приведены значения поля и градиента поля для магнитных элементов канала, использо-

Рис. 7. Огибающие пучка 238 U³⁴⁺ в канале с двумя соленоидами перед диполем (синяя огибающая в горизонтальной плоскости, красная огибающая в вертикальной плоскости).

Рис. 8. График потерь пучка ²³⁸U³⁴⁺ в канале с двумя соленоидами перед диполем (без учета потерь на диафрагме).

ванных при моделировании динамики пучка ионов $^{238}\mathrm{U}^{34+}$. Эффективная длина квадрупольных линз 200, 400 и 200 мм. Эффективная длина соленоидов 220 мм.

По результатам моделирования можно сделать следующие выводы:

• потери основного пучка ²³⁸U³⁴⁺ в данной компоновке канала составляют около 6%;

• потери примесного пучка $^{238}\mathrm{U}^{35+}$ при этом составляют около 37%, т.е. заметная часть примесного пучка доходит до ускоряющей трубки.

4. ЗАКЛЮЧЕНИЕ

В ходе разработки концептуального проекта системы транспортировки и анализа пучка мно-

Таблица 2. Значения поля и градиента поля для магнитных элементов канала, использованных при моделировании

	Поле соленоида 1,	Поле соленоида 2,	Градиент первой	Градиент второй	Градиент третьей
	Тл	Тл	линзы, Тл/м	линзы, Тл/м	линзы, Тл/м
U_{238}^{34+}	0.48	0.29	0.82	-0.61	0.94

гозарядных ионов из сверхпроводящего ЭЦР источника была выбрана предварительная схема компоновки транспортного канала и проведено моделирование динамики опорных пучков ионов $^{238}\mathrm{U}^{34+}$ и $^{40}\mathrm{Ar}^{8+}$ в приближении идеальных полей ионно-оптических элементов с током 20 мА при 100% компенсации пространственного заряда.

Транспортировка пучка ионов 238 U³⁴⁺ в данной конфигурации канала составила 100%. Потери примесного пучка 238 U³⁵⁺ при этом составили 93%.

В разработанном канале проведено моделирование динамики пучка ионов 40 Ar⁸⁺, транспортировка которого составила 100%. Потери примесного 40 Ar⁹⁺, составили 100% еще до сепарирующей диафрагмы.

Дальнейшая проработка системы опиралась на результаты транспортировки ионов урана. Было проведено моделирование динамики опорных пучков ионов 238 U $^{34+}$ и 40 Ar $^{8+}$ в приближении идеальных полей ионно-оптических элементов с током 20 мА при 70% компенсации пространственного заряда.

Проводка пучка ионов 238 U³⁴⁺ составила 94.5%, эффективность транспортировки ближай-шего по массе иона 238 U³⁵⁺ составила 62.5%. На

следующем этапе будет проводиться корректировка параметров системы анализа и транспортировки пучка с целью снижения потерь основного пучка ионов ²³⁸U³⁴⁺, моделирование магнитных и электростатических полей элементов тракта и проведение моделирования динамики пучков с использованием "реального" распределения полей в данных элементах, полученных при моделировании.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- Гульбекян Г.Г. и др. // Письма в ЭЧАЯ. 2019. Т. 16.
 № 6 (225). С. 653–665.
- YangY. et al. // Phys. Rev. Accel. Beams. 2019. V. 22. P. 110101.
- Yang J. C. et al. // China. Nucl. Instrum. Methods Phys. Res., Sect. B. 2013. V. 317. P. 263.
- Гульбекян Г.Г. и др. // Письма в ЭЧАЯ. 2014. Т. 11. № 6 (190). С. 1181–1196.
- Иваненко И.А., Казаринов Н.Ю. // Письма в ЭЧАЯ. 2014. Т. 11. № 6 (190). С. 1169—1180.
- Гикал Б.Н. и др. Канал аксиальной инжекции циклотрона ДЦ-60. Сообщение ОИЯИ. Р9-2006-39, Дубна, 2006.
- 7. https://www.pelletron.com/wp-content/uploads/2017/02/Accel-Tubes-v2.pdf.

LEBT Development for High Current Multicharged Ions Injector Based on SC ECR Ion Source

A. V. Ziiatdinova^{1, *}, P. A. Fedin¹, T. V. Kulevoy¹, A. A. Malishev¹, S. L. Bogomolov², and A. A. Efremov²

¹National Research Centre "Kurchatov Institute", Moscow, 123182 Russia ²Joint Institute for Nuclear Research, Moscow oblast, Dubna, 141980 Russia *e-mail: bishazi@yandex.ru

Received December 30, 2021; revised December 30, 2021; accepted January 12, 2022

Abstract—The work is devoted to the development of a low energy beam transport (LEBT) system for a high current multicharged ions injector based on a superconducting ECR ion source. ECR ion source is under development at JINR as part of superheavy element research program The LEBT includes a beam analysis system. The paper describes results of ion beams dynamic simulation in the LEBT with "ideal" field approximation for optic elements.

Keywords: beam dynamic simulation, ion beam, ECR ion source