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Эксперимент ФРАГМ, проводимый на базе многоцелевого ускорительного комплекса ИТЭФ–ТВН,
генерировал пучки протонов и ионов для различных исследований в области ядерной физики.
В данной статье представлена методика идентификации фрагментов в пучках вторичных ионов на
основе анализа корреляционных распределений по времени пролета и амплитуды сигнала с сцин-
тилляционных детекторов. Экспериментальные данные были получены при фрагментации пучка
углерода с энергией в 300 МэВ/нуклон при сканировании по жесткости магнито-оптического кана-
ла c шагом в 50 МэВ/c. На примере изотопов бериллия были получены дифференциальные сечения
процесса рождения ионов. Приводится сравнение полученных результатов с предсказаниями моде-
ли бинарного каскада.
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1. ВВЕДЕНИЕ
Изучение механизмов ядро-ядерных взаимо-

действий – это одно из основных направлений
современной ядерной физики. В последние годы,
особое внимание уделяется не только исследова-
ниям фундаментальных свойств взаимодействия
ионов, но и точным феноменологическим описа-
ниям таких процессов, что важно для таких обла-
стей прикладной науки, как радиационная защи-
та, адронная и ионная терапии [1]. Для этих целей
было создано немало программ, описывающих
ядро-ядерные взаимодействия для различных
энергетических диапазонов. Все они требуют экс-
периментальной проверки, а также совершен-
ствования основных теоретических подходов.
Многообразие экспериментальных данных по
фрагментации различных ионов позволит суще-
ственным образом улучшить качество и согласо-
ванность различных моделей. Одна из задач экс-
перимента ФРАГМ состояла в точных измере-
ниях выходов фрагментов при энергиях от 0.2 до
3.2 ГэВ/нуклон. Измерения проводились по
фрагментации ионов углерода на различных ми-
шенях, причем регистрировался широкий набор
родившихся частиц от пионов и протонов до изо-
топов углерода. Данная работа содержит описа-
ние методики выделения протонов и ионов с по-
мощью магнито-оптического канала экспери-
мента ФРАГМ на экспериментальном материале,

полученном при энергии в 300 МэВ/нуклон и до-
полняет аналогичные работы по фрагментации
ионов углерода [2–4]. В качестве примера получе-
ны экспериментальные и модельные дифферен-
циальные сечения рождения изотопов бериллия
под углом в 3.5°.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Эксперимент ФРАГМ был выполнен в Инсти-
туте теоретической и экспериментальной физи-
ки (НИЦ “Курчатовский институт” – ИТЭФ) на
базе многоцелевого ускорительного комплекса
ИТЭФ–ТВН (Тера–Ваттный Накопитель), кото-
рый ускорял пучки протонов до 10 ГэВ/нуклон и
пучки ионов до 4 ГэВ/нуклон. Эксперименталь-
ная установка (рис. 1) представляет собой двух-
ступенчатый магнито-оптический канал длиной
в 42 м, расположенный под углом в 3.5° по отно-
шению к пучку ускорителя [5]. В качестве внут-
ренней мишени использовалась узкая вертикаль-
ная полоска из 50-мкм бериллиевой фольги, что
позволяло одновременно иметь как высокую све-
тимость за счет многократного прохождения
ионов через мишень, так и малые размеры источ-
ника для полного использования высокого им-
пульсного разрешения канала. В качестве мони-
тора использовался телескоп из трех сцинтилля-
ционных счетчиков, ориентированных под углом
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в 2° по отношению к мишени. Первая ступень
установки состояла из дублета квадрупольных
линз Q1 и Q2, отклоняющего магнита BM1, си-
стемы коллиматоров и полевой квадрупольной
линзы Q3, предназначенной для улучшения им-
пульсного разрешения пучка и расположенной в
первом фокусе канала на расстоянии в 26 м от ми-
шени. Вторая ступень включала в себя дублет
квадрупольных линз (Q4 и Q5), поворотный маг-
нит BM2, и была предназначена для фокусировки
пучка в область расположения сцинтилляцион-
ных счетчиков (С2 и С3). В первом фокусе был
установлен годоскоп H1 и два сцинтилляцион-
ных счетчика CF1 и CF2. Годоскоп состоял из
двадцати вертикальных и восьми горизонтальных
элементов размером 20 × 1 × 1 см3 и предназна-
чался как для измерения профиля пучка, так и
для уточнения импульса фрагмента до 0.2% с уче-
том фокусирующих свойств магнито-оптического
канала. Сцинтилляционные счетчики в каждом
фокусе предназначались для амплитудных и вре-
мяпролетных измерений. Каждый счетчик про-
сматривался двумя ФЭУ с противоположных сто-
рон для компенсации их геометрических разме-
ров при времяпролетных измерениях. В качестве
триггера использовалось совпадение сигналов со
счетчиков первого и второго фокуса. По сигналу
триггера необходимая информация считывалась
с системы САМАС на диск компьютера.

3. МЕТОДИКА АНАЛИЗА 
КОРРЕЛЯЦИОННЫХ РАСПРЕДЕЛЕНИЙ

В данной работе представлена методика отбо-
ра ионов (изотопов бериллия) при энергии в
300 МэВ/нуклон. Измерения были получены при
сканировании по жесткости магнито-оптическо-
го канала от 0.9 до 2.8 ГэВ/c c шагом в 50 МэВ/c.
Отбор фрагментов производится по корреляци-
онным распределениям времени пролета (TDC) и
амплитуды сигнала с зарядово-цифрового преоб-
разователя (QDC) при различных настройках
магнито-оптического канала по жесткости, пред-
ставленные на рис. 2. Временные измерения
определены таким образом, что ионы с большим
импульсом имеют меньшую величину в каналах
TDC. На первом этапе ионы выделяются по заря-
ду в области, ограниченной двумя линиями, как
показано на рис. 2 сверху, которые имеют одина-
ковый наклон в зависимости от жесткости кана-
ла. Проекция отобранных данных на ось времени
позволяет выделить искомый фрагмент. На рис. 2
снизу показаны распределения времени пролета
в области регистрации изотопа 10Be. Видно, что
сигналы от разных ионов хорошо разделены, а
число зарегистрированных событий определяет-
ся суммой событий в распределении. Фон от со-
седних изотопов пренебрежимо мал и на рис. 2 не
виден. Также рис. 2 демонстрирует возможность
регистрации установкой изотопа 11Be, содержа-

Рис. 1. Схема экспериментальной установки ФРАГМ.
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щего семь нейтронов и образующегося в процессе
однократной перезарядки нуклонов налетающего
ядра углерода.

4. МОДЕЛИРОВАНИЕ ПРОХОЖДЕНИЯ 
ПУЧКА ИОНОВ В ЭКСПЕРИМЕНТЕ ФРАГМ

Магнито-оптический канал установки
ФРАГМ обладает особыми конструкционными
особенностями. Заряженные частицы при своем
движении вдоль канала проходят сквозь колли-
маторы, сцинтилляционные счетчики, разрывы
вакуумопровода в области счетчиков, что влияет
на интенсивность и энергию пучка. Очевидно,
что при проводке пучка необходимо учитывать
такие процессы, как многократное рассеяние,
ионизационные потери и неупругое взаимодей-
ствие частиц со средой. Для расчета эффективно-
сти регистрации протонов и широкого набора
ионов было проведено моделирование экспери-
мента. Программа моделирования эксперимента
была создана на базе приложения Geant4 (версия
4.10.07) [6]. Код программы включал точное опи-
сание геометрических параметров элементов маг-
нито-оптического канала и сцинтилляционных
счетчиков, измеренные карты магнитных полей
отклоняющих магнитов и квадрупольных линз.

Для учета взаимодействия ионов с веществом был

использован набор физических процессов

QGS_BIC, где в качестве описания процессов не-

упругого взаимодействия используется модель

бинарного каскада (BC) [7]. Магнитные поля и

градиенты квадрупольных линз задавались в со-

ответствии с настройкой канала на определенную

жесткость (p/Z). Начальные кинематические

условия для протонов и ионов включали ограни-

чения по углу  < 1° и импульсу dp/p = 3.5%, что

соответствовало угловому и импульсному захвату

установки. Исследуемая область по жесткости

определялась стабильностью источников пита-

ния при малых токах и предельной рассеиваемой

мощностью отклоняющих магнитов и была вы-

брана в пределах от 0.6 до 6 ГэВ/c. Регистрация

заряженной частицы осуществляется в том слу-

чае, если она проходит через счетчики как в пер-

вом, так и во втором фокусе. Эффективность ре-

гистрации протонов, дейтронов и изотопов бе-

риллия (7Be и 10Be) в зависимости от жесткости

канала представлена на рис. 3. Модельные дан-

ные могут быть хорошо описаны функцией

, где  = p/Z, p и Z –

импульс и заряд фрагмента, , ,  – свободные

параметры. Поправка на эффективность играет

θ

= − − 2

2 0 1( ) exp[ ( ) ]f x p p x p x

0p 1p 2p

Рис. 2. На верхних графиках представлены корреляционные распределения времени пролета (TDC) и амплитуды сиг-
нала (QDC) при различных настройках магнито-оптического канала по жесткости (p/Z). Нижний ряд графиков пока-
зывает проекцию на ось времени пролета корреляционного распре- деления в области регистрации изотопа 10Be.
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существенную роль при жесткости до 3 ГэВ/c и
может существенным образом изменить им-
пульсный спектр ионов. В области больших зна-
чений по p/Z эффективности протонов и ионов
выходят на плато, причем для протонов она при-
мерно на 20% больше, чем для бериллия.

5. СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ 
И МОДЕЛЬНЫХ ДАННЫХ
НА ПРИМЕРЕ БЕРИЛЛИЯ

Относительные выходы фрагментов вычисля-
лись нормировкой числа зарегистрированных
ионов на показания монитора с учетом эффек-
тивности их регистрации. Для получения абсо-
лютных величин дифференциальных сечений

 была проведена нормировка на полное

сечение взаимодействия ионов углерода и бериллия.
Следует отметить, что до сих пор не существует
соответствующих экспериментальных данных,
однако энергонезависимое приближение полного

сечения  может быть вычислено по формуле
[8]:

(1)

где  = 1.36 фм,  = 12 и  = 9 – массовые числа

налетающего ядра и мишени. Данная формула
справедлива для энергий налетающего иона превы-
шающих 100 МэВ/нуклон [9] и дает в нашем случае

 = 776.8 мбн. Более детальный расчет сечения,
которое зависит от энергии налетающего иона дает

σ Ω2d dpd

σtot

− −

− −

σ = π + − +
= − +

2 1/3 1/3 1/3 1/3 2

tot 0 p t 0 p t

1/3 1/3

0 p t

[ ( )] ,

1.581 0.876( ),

r A A b A A

b A A

0r pA tA

σtot

модель LAQGSM/MCNP6 [10],  = 772.8 мбн при

кинетической энергии  = 300 МэВ/нуклон. Се-

чения для данной модели приведены на рис. 4 для

соответствующих энергий набора данных в экс-

перименте. На рис. 5 представлены измеренные и

модельные дифференциальные сечения в зависи-

мости от лабораторного импульса для 7Be, 9Be и
10Be, полученные нормировкой на сечение рож-

дения дейтрона. Сечения перекрывают до пяти

порядков величины, причем распределение каж-

дого фрагмента имеет гауссову форму, где макси-

σtot

T

Рис. 3. Эффективность регистрации ионов магнито-оптическим каналом установки ФРАГМ.
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мум в импульсе на нуклон близок к величине им-
пульса на нуклон налетающего ядра углерода.
Модельные данные получены в рамках модели
BC, причем они хорошо согласуются с экспери-
ментальными данными в смысле среднего значе-
ния и формы распределения. Различие по величи-
не сечения ожидаемо, поскольку в [11] показано,
что предсказания моделей ион-ионных взаимо-
действий сильно различаются, эта разница воз-
растает с увеличением массы фрагмента при фик-
сированном угле регистрации, что связано с раз-
личиями в угловых зависимостях выхода фрагментов
в моделях.

6. ЗАКЛЮЧЕНИЕ

В работе была представлена методика иденти-
фикации фрагментов в пучках ионов на основе
анализа корреляционных распределений време-
ни пролета и амплитуды сигнала с сцинтилляци-
онных детекторов в эксперименте ФРАГМ. Экс-
периментальные данные были получены
при фрагментации ионов углерода с энергией в
300 МэВ/нуклон при сканировании по жесткости
магнито-оптического канала c шагом в 50 МэВ/c,
при анализе данных были отобраны изотопы бе-

риллия (7Be, 9Be, 10Be). Для определения эффек-
тивности регистрации ионов в зависимости от
его импульса, было проведено моделирование
эксперимента с помощью программного пакета
Geant4. При вычислении дифференциальных
сечений была проведена была проведена норми-
ровка на полное сечение взаимодействия ионов
углерода и бериллия. Дифференциальные сече-
ния процесса рождения ионов бериллия в зависи-
мости от импульса приведены совместно с теоре-

тическими предсказаниями, полученными в рам-
ках модели бинарного каскада.
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Рис. 5. Дифференциальные сечения выходов ионов бериллия в зависимости от импульса фрагмента, полученные на
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Abstract—The FRAGM experiment was carried out on the multipurpose accelerator complex ITEP TWAC,
which generated of protons and ions beams for various research in the nuclear physics. This article presents a
technique for identifying fragments in secondary ion beams based on analysis of correlation distributions in
time-of-flight and amplitude signal from scintillation detectors. The experimental data were obtained by
fragmentation of a carbon beam with an energy of 300 MeV/nucleon at scanning the rigidity of the magneto-
optical channel with a step of 50 MeV/c. Differential cross sections were obtained using the beryllium isotopes
ion production process. The obtained results are compared with predictions of the binary cascade model.

Keywords: experiment FRAGM, ion-ion interaction, nucleon charge exchange, binary cascade model
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