ИНЖЕНЕРНОЕ ПРОЕКТИРОВАНИЕ ЯЛЕРНО-ФИЗИЧЕСКОЙ АППАРАТУРЫ

УЛК 538.945

ВЛИЯНИЕ МЕХАНИЧЕСКИХ ДЕФОРМАЦИЙ ВТСП ЛЕНТ НА ТОКОНЕСУЩИЕ ХАРАКТЕРИСТИКИ ПРИ СОЗДАНИИ CORC КАБЕЛЯ

© 2023 г. С. В. Веселова^{а, *}, Д. А. Абин^а, А. С. Стариковский^а, С. В. Покровский^а, И. А. Руднев^а, М. С. Новиков^b

^a Национальный исследовательский ядерный университет "МИФИ", Москва, 115409 Россия ^b Объединенный институт ядерных исследований, Дубна, Московская обл., 141980 Россия *E-mail: svveselova@mephi.ru

Поступила в редакцию 20.07.2022 г.

После доработки 27.07.2022 г.

Принята к публикации 28.07.2022 г.

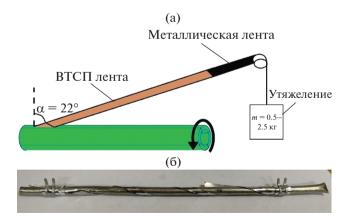
Высокотемпературные сверхпроводящие магниты представляют собой систему со сложной конфигурацией. В процессе создания подобных систем ВТСП ленты могут быть подвержены механическим повреждениям, что влечет за собой ухудшение транспортных характеристик ленты. В данной работе представлены результаты экспериментальных исследований влияния механических напряжений на транспортные характеристики ВТСП лент второго поколения. Были измерены вольт-амперные характеристики различных образцов ВТСП лент второго поколения при их намотке на цилиндрические формеры различного диаметра. Намотка проводилась под углами 22° и 40° относительно оси формера с усилием от 10 до 20 Н. Проведено сравнение различных вариантов намотки и определен оптимальный набор конфигурации намотки, соответствующий минимальной деградации критического тока ленты. При помощи сканирующей холловской магнитометрии определены области локализации дефектов, возникающих при различных вариантах намотки. Все измерения проводились при температуре кипения жидкого азота. Полученные данные позволили рассчитать область протекания продольной и поперечной компоненты тока в каждом отдельном случае.

Ключевые слова: сверхпроводник, ВТСП лента, СОRС кабель, механические деформации, критический ток

DOI: 10.56304/S2079562922050517

В последнее время для создания высоких магнитных полей используются высокотемпературные сверхпроводники, такие как Bi₂Sr₂CaCu₂O₂, Ві₂Sr₂Ca₂Cu₃O₂ и проводники с покрытием RE-Ва₂Си₃О_{7 - г}(REBCO, где RE обозначает редкоземельные элементы, например, Y или Gd), и с их помощью становится возможным создать сверхпроводящие магниты, позволяющие создать магнитные поля, превышающие значения в 20 Тл. Достижение подобных значений было бы невозможно с использованием традиционных низкотемпературных сверхпроводников, например, NbTi и Nb₃Sn. Высокие магнитные поля могут связаны с высокой плотностью тока в обмотке, практическая реализация которого сопряжена с рядом технических проблем. Одним из вариантов создания высокотемпературных сверхпроводящих (ВТСП) кабелей является так называемый CORC кабель (Conductor on Round Core Cable) на основе ВТСП лент второго поколения, который может быть использован для различных типов магнитов — ускорительных, индуктивного накопителя и т.д. [1-5].

Конструктивным решением производства такого кабеля является многослойная спиральная намотка лент шириной 4 мм на мельхиоровую трубку, используемую в качестве и формера, и канала охлаждения. В процессе изготовления CORC-кабеля или магнита из него лента может быть подвержена механическим повреждениям и, как следствие, необратимой локальной деформации сверхпроводящего слоя, что может привести к снижению токонесущих характеристик кабеля. Для CORC кабеля можно выделить отдельно дефекты намотки (погрешность укладки лент вдоль трубки) и локальные дефекты отдельных лент (области с низким критическим током). Таким образом, создание магнитов из ВТСП требует большого количества проверок стабильности системы, в первую очередь потому, что сверхпроводящий слой имеет довольно хрупкую гетероструктуру. При производстве CORC кабеля ленты подвергаются различным механическим манипуляциям [6-9], таким как намотка, растяжение и скручивание. Важно понимать, что подобные действия могут повредить ВТСП слой и, как следствие, снизить


Таблица 1. Виды экспериментальных образцов

Лента	Толщина подложки, мкм	Критический ток, А	Покрытие
Лента 1	30	170-174	медь + припой
Лента 2	40	147—159	медь + припой

характеристики транспортного тока. Влияние параметров намотки [10, 11], а также диаметра формера, существенно для механических напряжений, например, значения максимальной собственной осевой леформации становятся лопустимыми, начиная с 4 мм. Поскольку повреждения в каждом отдельном случае зависит как от конструктивных особенностей, так и от приложенного усилия, токонесущая способность в каждом отдельном случае будет отличаться. Таким образом необходимо проводить экспериментальные исследования по определению механических повреждений образцов, предлагаемых для создания на их основе ВТСП магнитов. Настоящая работа посвящена исследованию различных параметров намотки ВТСП ленты на токонесущие свойства и определению оптимальных комбинаций этих параметров при создании CORC кабеля. В дополнение произведено исследование однородности магнитного поля для обнаружения дефектов.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДЕТАЛИ

Для проведения эксперимента были выбраны образцы ВТСП лент на основе REBCO шириной 4 мм производства компании SuperOx, параметры которых представлены в табл. 1. Выбор образцов обусловлен использованием данных лент при производстве ВТСП кабелей для создания сверхпроводящего индукционного накопителя.

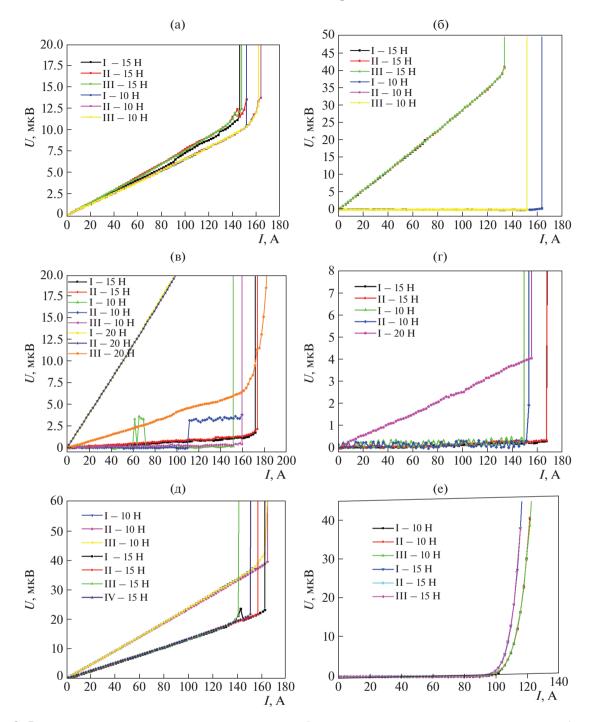
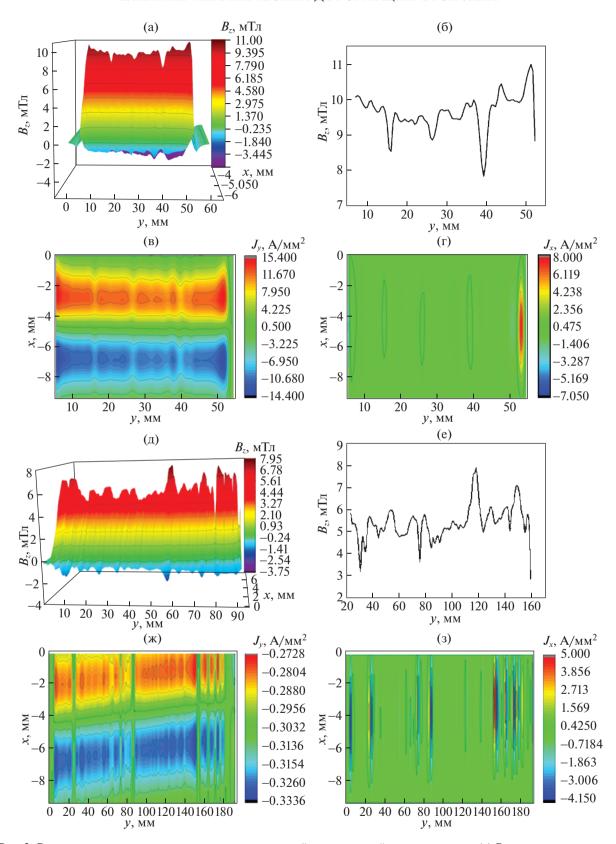
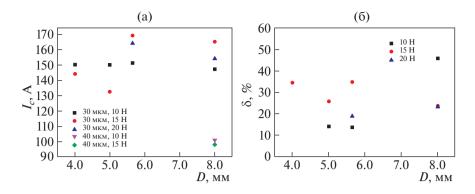


Рис. 1. (а) Схема намотки ВТСП ленты на цилиндрический формер. (б) Образец тестовой намотки CORC кабеля для исследования.

Для исследований были использованы цилиндрические формеры с диаметрами 4, 5, 5.65 и 8 мм, на которые выполнялась намотка ВТСП образцов. Угол намотки составлял 22° и 40° (определяется как угол между проекцией оси симметрии трубки на поверхность трубки в точку касания с лентой и гранью ленты). Один конец образца закреплялся на мельхиоровом формере при помощи металлического хомута, второй конец образца фиксировался на металлической подложке. Натяжение производилось через цилиндрический блок. На втором конце подложки зафиксированы грузы от 10 до 20 Н. Принципиальная схема намотки образцов представлена на (рис. 1а). Важно отметить, что лента наматывалась на мельхиоровую трубку сверхпроводящим слоем внутрь, после чего фиксировалась с двух концов хомутами (рис. 1б). Для создания токового контакта на трубку, перпендикулярно виток к витку (5-10) к держателю наматывалась тонкая медная проволока и затем припаивалась к ленте. Это послужило связующим звеном от токоввода к ленте. Это позволило избежать дополнительных механических напряжений в месте контакта токоввода и ВТСП ленты. Расстояние между потенциальными контактами 1.5-2.0 см. Стоит отметить, что так как лента намотана ВТСП внутрь, все контакты наносятся на ленту со стороны подложки. Для исследования каждого набора параметров бралась новая лента. Для некоторых наборов использовалось больше одного образца ленты. Измерения ВАХ для образцов повторялись 1—3 раза. После измерения ВАХ образец был выпрямлен для последующего измерения на холловском магнитометре. На основе полученных данных был произведен расчет распределения продольной и поперечной компонент транспортного тока.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Были получены вольт-амперные характеристики исследуемых образцов. По их результатам был определен критический ток из расчета по критерию 1 мкВ/см. Результаты измерений представлены на рис. 2. Хорошо видно, что на части полученных графиков присутствует резистивный вклад до точки перехода. Это связано с тем, что во время намотки СП слой был подвержен растрескиванию, что привело к частичному или полному перетеканию сверхпроводящего тока в слои меди и припоя. Также было выявлено снижение значения критического тока у всех образцов. Исследуемые образцы обладают резкой нелинейностью вольт-амперной характеристики (большим показателем степени n-value в экспоненциальном законе зависимости напряжения от тока, рассчитанным по формуле $E = \left(J/J_c\right)^n$, где E — напряженность электрического поля, J — плотность


Рис. 2. Вольт-амперные характеристики исследованных образцов при различных вариантах намотки на формер: (а) Подложка 30 мкм, намотка на трубку диаметром 4 мм. (б) Подложка 30 мкм, намотка на трубку диаметром 5 мм. (в) Подложка 30 мкм, намотка на трубку диаметром 8 мм. (д) Подложка 30 мкм, намотка на трубку диаметром 8 мм. (д) Подложка 30 мкм, намотка на трубку диаметром 5 мм и углом 40 градусов. (е) Подложка 40 мкм, намотка на трубку диаметром 8 мм и углом 22°. На легенде указано количество измерений и усилие намотки.

тока, J_c — критическая плотность тока) и поэтому подвержены возможному перегоранию во время измерений.

Для определения распределения линий магнитного поля образцы были выпрямлены и просканированы на установке сканирующей холловской магнитометрии [12, 13]. После чего был произведен расчет распределения продольной и поперечной компонент транспортного тока. Примеры этого исследования представлены на рис. 3. Анализ показал, что при усилии 10 Н намотки на мельхиоровую трубку диаметром 5 мм под углом 22°, одно-

Рис. 3. Результаты исследования при помощи холловской сканирующей магнитометрии. (а) Распределение магнитного потока образца после намотки на формер диаметром 5 мм с усилием 10 H. (б) Средняя линия распределения магнитного потока образца. (в) Распределение продольной компоненты плотности тока, А/мм². (г) Распределение поперечной компоненты плотности тока, А/мм². (д) Распределение магнитного потока образца после намотки на формер диаметром 8 мм с усилием 10 H. (е) Средняя линия распределения магнитного потока образца. (ж) Распределение продольной компоненты плотности тока, А/мм². (з) Распределение поперечной компоненты плотности тока, А/мм².

Рис. 4. Сводные данные полученных значений критического тока и неоднородности. (а) Зависимость критического тока от диаметра намотки. Намотка под углом 22°. (б) График зависимости неоднородности магнитного поля (δ) от диаметра намотки, для угла намотки 22°.

родность магнитного поля практически не отличается от значений для тестового образца, который не подвергался механическим напряжениям. Вследствие чего можно увидеть минимальные дефекты образца из рис. Зг. Возникновение продольной компоненты тока свидетельствует об обтекании дефектов, таких как трещины в сверхпроводящем слое. Образец, намотанный на трубку 8 мм с усилием 10 Н показал наличие множества трещин, которые могли появиться вследствие термической

обработки паяльным оборудованием или выпрямления ленты для последующих тестов.

В сводной табл. 2 представлены численные значения исследования критического транспортного тока и неоднородности распределения линий магнитного поля, а также наличие резистивного вклада для различных комбинаций параметров намотки ВТСП ленты.

Рисунок 4 представляет собой сводные гистограммы зависимости критического тока от диа-

Таблица 2. Данные, полученные при измерении ВАХ образцов с различными параметрами намотки

Угол намотки, градусы	Толщина подложки, мкм	Диаметр, мм	Усилие намотки, Н	Крит. ток, А	Резистивный вклад, нВ/А	Неоднородность поля, %
22	30	8.0	1.0	148-149	нет	45.86
			1.5	165	нет	23.57
			2.0	153	25	23.16
		5.65	1.0	151-159	нет	13.54
			1.5	172—173	7.5	34.80
			2.0	II — 165	I – 200 II – 40	18.98
		5.0	1.0	151-163	нет	13.95
			1.5	133	287	25.64
		4.0	1.0	151-163	66	106.18
			1.5	145—151	76	34.32
	40	8.0	1.0	100-102	нет	_
			1.5	98	нет	_
40	30	5.0	1.0	161-163	239	_
			1.5	139—161	135	_

метра намотки и усилий для угла намотки 22° . Хорошо видно, что наибольшая стабильность значения I_c возможна при усилии намотки не более 10 Н для каждого из выбранных диаметров.

ЗАКЛЮЧЕНИЕ

По результатам проведенных исследований можно сделать следующие выводы:

- 1. В реальных условиях не рекомендуется допускать рабочие режимы с транспортными токами близкими к критическому значению. Намотка на мельхиоровую трубку улучшает термостабилизацию исследуемых ВТСП лент при погружении в жидкий азот. Благодаря этому ленты не перегорают во время измерения ВАХ. Существует зависимость появления резистивного вклада на ВАХ от усилия натяжения ВТСП композита и диаметра мельхиоровой трубки при намотке. В дополнение, с увеличением усилия намотки и уменьшением диаметра на сверхпроводящем участке ВАХ показатель степени п вблизи начала сверхпроводящего перехода уменьшается. Усилие более чем 20 Н не рекомендуется для намотки данного типа лент с подложкой 30 мкм, т.к. может вызывать разрывы на изгибе композита.
- 2. Определены оптимальные параметры намотки данного типа лет с подложкой 30 мкм. Таким образом, при усилии намотки 10 H на формер диаметром 5 мм с углом намотки 22° у образцов не возникает резистивной составляющей на ВАХ и не наблюдается значительной деградации критического транспортного тока. Лента с толщиной подложки 40 мкм подходит для намотки на трубку диаметром 8 мм и углом 22°.
- 3. Показано, что оптимальными параметрами для намотки ВТСП ленты такого типа с толщиной подложки 30 мкм являются усилие в 10 Н на трубки диаметром 5 мм и более с углом намотки 22°. В этом случае не возникает резистивной составляющей на ВАХ при токах ниже критического, и не наблюдается значительной деградации критического тока. Лента с толщиной подложки 40 мкм хорошо подходит для намотки на трубку диаметром 8 мм и под углом 22°.
- 4. Проведена серия исследований образцов при помощи сканирующей холловской магнитометрии. Расчет среднего отклонения был выполнен при помощи полученных максимальных и минимальных значений захваченного магнитного поля. Сравнительный анализ показал значительное увеличение неоднородности магнитного потока, возникающего на ВТСП лентах после их намотки на формеры. Ленты, не подвергшиеся воздействию, показывали среднюю неоднородность поля $\delta = \pm 7.12\%$, также образец, взятый за основу,

показал среднюю неоднородность $\delta = \pm 13.62\%$, в то время как различные воздействия ухудшили этот показатель до $\delta = \pm 45.86\%$.

Дальнейшие исследования должны включать в себя эксперименты по намотке ВТСП лент с различными толщинами подложки, такие как 20 мкм и 25 мкм, т.к. толщина подложки может иметь существенное влияние на итоговый диаметр изгиба, и, как следствие, сверхпроводящий слой будет подвергаться меньшей деформации кручения. Толщина подложки влияет на расположение СП слоя ленты к средней линии образца. Таким образом, при намотке ленты на трубку внутренний слой подвергается деформации сжатия, а внешний — деформации растяжения. Следовательно, средняя линия подвержена минимальной деформации, что предотвращает появление дефектов и сохраняет необходимую плотность тока.

Полученные в работе данные позволят существенно оптимизировать параметры намотки ВТСП ленты при изготовлении CORC кабеля.

БЛАГОДАРНОСТИ

Работа выполнена при частичной финансовой поддержке Российской Федерацией в лице Министерства науки и высшего образования Российской Федерации, Соглашение № 075-15-2021-1352 (С.В. Веселова, С.В. Покровский, Д.А. Абин, И.А. Руднев).

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- Yanagi N. et al. // Plasma Fusion Res. 2014. V. 9. P. 1405013.
- 2. Ito S. et al. // Fusion Eng. Des. 2018. V. 136. P. 239–246
- 3. Ashok K.B. et al. // Phys. C. 2021. V. 582. P. 1353828.
- 4. *Van der Laan D.C., Weiss J.D., McRae D.M.* // Supercond. Sci. Technol. 2019. V. 32 (3). P. 033001.
- Mitchell N. et al. // Supercond. Sci. Technol. 2021.
 V. 34 (10). P. 103001.
- 6. Molodyk A. et al. // Sci. Rep. 2021. V. 11 (1). P. 1–11.
- 7. *Pierluigi B. et al.* // Nucl. Fission. 2018. V. 58 (10). P. 103001.
- 8. Wolf M.J. et al. // Cryogenics. 2019. V. 104. P. 102980.
- Hu R. et al. // IEEE Trans. Appl. Supercond. 2021.
 V. 31 (5). P. 1–5.
- Zappatore A. et al. // Supercond. Sci. Technol. 2020.
 V. 33 (6). P. 065004.
- 11. Zhai Y. et al. // Fusion Eng. Des. 2021. V. 168. P. 112611.
- 12. Rudnev I.A., Pokrovskiy S.V., Podlivaev A.I. // IEEE Trans. Appl. Supercond. 2011. V. 22 (3). P. 9001304.
- 13. *Podlivaev A.I. et al.* // Tech. Phys. Lett. 2017. V. 43 (12). P. 1136–1139.

Influence of Mechanical Deformations of HTSC Tapes on the Current-Carrying Characteristics in the Creation of a CORC Cable

S. V. Veselova^{1, *}, D. A. Abin¹, A. S. Starikovskii¹, S. V. Pokrovskii¹, I. A. Rudnev¹, and M. S. Novikov²

¹National Research Nuclear University (Moscow Engineering Physics Institute), Moscow, 115409 Russia

²Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia

*e-mail: svveselova@mephi.ru

Received July 20, 2022; revised July 27, 2022; accepted July 28, 2022

Abstract—High-temperature superconducting magnets are a system with a complex configuration. In the process of creating such systems, HTSC tapes can be subject to mechanical damage, which leads to a deterioration in the transport characteristics of the tape. This paper presents the results of experimental studies of the effect of mechanical stresses on the transport characteristics of the second-generation HTSC tapes. The volt-ampere characteristics of various samples of second-generation HTSC tapes were measured during their winding on cylindrical formers of various diameters. Winding was carried out at the angles of 22 and 40 degrees relative to the former axis with a force from 10 to 20 N. Different winding options were compared and the optimal set of winding configurations corresponding to the minimum degradation of the critical current of the tape was determined. Scanning Hall magnetometry is used to determine the regions of localization of defects arising at various winding options. All measurements were carried out at the boiling point of liquid nitrogen. The obtained data made it possible to calculate the area of flow of the longitudinal and transverse components of the current in each individual case.

Keywords: superconductor, HTSC tape, CORC cable, mechanical strain, critical current