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тации радиационно-индуцированных дефектов. Приведен способ измерения профиля пучка с по-
мощью ПЗС-камеры. Представлены результаты времяпролетных измерений пучка ионов железа на
базе ускорителя ТИПр с ускоряющей структурой RFQ.
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ВВЕДЕНИЕ
Исследование радиационной стойкости мате-

риалов ядерных и термоядерных реакторов, а так-
же влияния образующихся в ходе радиационного
воздействия дефектов их кристаллической струк-
туры на эксплуатационные характеристики явля-
ется важной прикладной задачей. Конструкцион-
ные материалы для ядерных и термоядерных реак-
торов должны выдерживать высокие нейтронные
потоки и высокие температуры. Выбор материалов
осуществляется на основе проведенной аттеста-
ции их радиационной стойкости. Такие аттеста-
ции обычно проводятся в исследовательских ре-
акторах, однако, это занимает значительный
промежуток времени (не менее десяти лет), что
обуславливает интерес к проведению имитацион-
ных экспериментов нейтронного воздействия на
пучках тяжелых ионов [1]. Это позволяет сократить
набор необходимого количества смещений на атом
(сна) в исследуемом материале до нескольких су-
ток и даже часов. Таким образом проведение облу-
чения пучками тяжелых ионов образцов материа-
лов является методом экспресс-моделирования, и
может выступать в качестве предварительной ста-
дии тестирования конструкционных материа-
лов. Имитационные эксперименты на ускорителях
тяжелых ионов не активируют образцы, что удоб-

но для проведения микро- и макроскопических
исследований результатов экспериментов.

В НИЦ “Курчатовский институт” – ИТЭФ на
тяжелоионном ускорителе ТИПр с 2009 года про-
водятся эксперименты [2, 3] по облучению мате-
риалов ядерных реакторов для исследований ра-
диационной устойчивости. Установка ТИПр разра-
ботана для ускорения тяжелых ионов с отношением
массы к заряду до 60 до энергий 101 кэВ/нуклон [4].
Схема ускорителя представлена на рис. 1. Линей-
ный ускоритель ТИПр работает в импульсном ре-
жиме с длительностью импульса 475 мкс при ча-
стоте повторения до одного импульса в две секун-
ды. На ускорителе установлен вакуумно-дуговой
источник ионов металлов (ВДИИМ).

При проведении работ по облучению материа-
лов ядерных реакторов (преимущественно сталей и
сплавов циркония) для последующего экспресс-
анализа изменения структуры и свойств матери-
алов используется пучок ионов железа с энерги-
ей 5.6 МэВ, в соответствие с принципом прове-
дения таких экспериментов, описанным в [5].
Облучение одного образца материала диамет-
ром 3 мм проводится при потоке ионов на один
образец до 250 мкА в диапазоне температур от
комнатной до 500°С.
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В связи с выполненной модернизацией канала
вывода пучка, а также обновлением блоков пита-
ния квадрупольных линз, что заметно повысило
стабильность их параметров, была проведена на-
стройка и поиск рабочего режима облучения для
образцов конструкционных материалов реакто-
ров диаметром 3 мм.

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ПУЧКА

Для обеспечения требуемой в имитационных
экспериментах равномерности пучка на мишени
(отклонение от максимального тока на 20% по об-
разцу) была проведена настройка режима работы
квадрупольных линз. Измерения проводились дву-
мя способами: с использованием штатного профи-
лометра и с помощью сцинтиллятора, устанавлива-
емого в плоскости расположения облучаемых об-
разцов. Штатная система измерения ионного пучка
выполнена в виде профилометра. Внешний вид
профилометра с названиями ламелей показан на

рис. 2. Профилометр содержит пять вертикаль-
ных и пять горизонтальных медных измерительных
проволок (ламелей) диаметром 1 мм. Данный про-
филометр используется не только при настройке
пучка на мишень, но и для онлайн-контроля за пуч-
ком во время облучения. Держатель образцов рас-
полагается сразу после профилометра. Пучок ска-
нирует ламели мишени и снимается сигнал с двух
симметрично расположенных относительно центра
ламелей, на основании сигналов строятся профили
пучка. Способ измерения профиля пучка с исполь-
зованием профилометра подробно описан в [6].

Для получения более полной информации о по-
перечном распределении ионов в пучке, на место
расположения облучаемых образцов был установ-
лен сцинтиллятор и проведено измерение профиля
пучка с его помощью (см. рис. 3). Сигнал со сцин-
тиллятора фиксировался ПЗС-камерой SDU-285.
Экспозиция, установленная на ПЗС-камере, состав-
ляла 40 мкс. ПЗС-камера оптического формата 2/3,
с разрешением 1392 × 1032, размер ПЗС 8.77 ×

Рис. 1. Схема ТИПр: 1 – инжектор; 2 – камера наблюдения № 1; 3 – электростатические линзы; 4 – структура с
ПОКФ; 5 – камера наблюдения № 2; 6 – квадрупольные линзы Л1, Л2, Л3; 7 – камера мишени.

1 2 3
4

5
6

7Л3Л2Л1

Рис. 2. Устройство профилометра ионного пучка.
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× 6.6 мм, а размер пикселя 6.45 × 6.45 мкм. Съемка
проходила при длительности пучка 40 мкс.

Полученные с использованием сцинтиллятора
снимки пучка были преобразованы с использова-
нием математических программ обработки изоб-
ражений (Matlab [7]) в интенсивность тока пучка.
В результате обработки получены вертикальный
и горизонтальный профили пучка. На рис. 4 приве-
дены профили пучка, полученные с использовани-
ем сцинтиллятора, профилометра, и для сравнения
показано распределение Гаусса, построенное по
результатам измерения профилометром.

По результатам проведенных измерений мож-
но утверждать, что поперечное распределение то-
ка ионов в пучке, измеряемое в ходе эксперимен-
тальных работ с использованием проволочного
профилометра, совпадает с результатами изме-
рений, проведенных с использованием сцинтилля-
тора, и имеет гауссово распределение. Однако, из
рис. 4 видно, что измеряемый с ламелей сигнал
принимает отрицательные значения на краях пуч-
ка. Вызвано это, предположительно, вторичными
электронами.

ВРЕМЯПРОЛЕТНЫЕ ИЗМЕРЕНИЯ
Зарядовое распределение пучка ионов железа,

генерируемого вакуумно-дуговым источником,
определялось перед ускоряющей структурой время-
пролетным методом [8]. В основе времяпролетного
метода измерения распределения ионов пучка ле-
жит принцип различия скоростей ионов с разным
отношением массы к заряду после их ускорения в
электростатическом поле. Расстояние между ис-
точником и токоприемником составило 2.5 м. То-
коприемник расположен после электростатиче-
ских линз (рис. 1, поз. 3), которые были выключе-
ны во время измерения, и представляет собой
пластину без каких-либо подавителей вторичных
электронов.

Для проведения измерений на ионном источ-
нике из полного импульса источника в 475 мкс вы-
резался из начала целого импульса короткий сигнал
длительностью 1 мкс. На рис. 5 показано распреде-
ление интенсивности сигнала с этого токоприем-
ника. Затем проведено исследование полного им-
пульса, вырезанием короткого сигнала из разных
частей импульса. Исследование показало, что в
полном импульсе пучка перед RFQ содержится 67%
ионов Fe+2, 17% ионов Fe+3 и 16% ионов Fe+1.

Проведено измерение распределения зарядово-
го состояния пучка ионов железа после ускорения в
RFQ. Токоприемник представляет собой медную
пластину, установленную в камере наблюдения № 2
(рис. 1, поз. 5), полностью перекрывающую пучок,
сигнал с которой выводится на осциллограф.
Перед токоприемником установлен цилиндри-
ческий электрод, выполняющий роль супрессора

вторичных электронов. На супрессор подается от-
рицательный потенциал −400 В, что достаточно для
подавления потока вторичных электронов с токо-
приемника [9].

Для проведения измерений распределения
ионов по зарядам после ускорения на ионном ис-
точнике из полного импульса источника в 475 мкс
вырезался из начала целого импульса сигнал дли-
тельностью 1 мкс. Канал согласования в виде элек-
тростатических линз после ионного источника, а
также ускоряющая структура работали в таком
режиме, как и при проведении имитационных
экспериментов. На рис. 6 показана осциллограм-
ма полученного сигнала с токоприемника. На пред-
ставленной осциллограмме видны пики, соответ-
ствующие ускоренным ионам железа Fe3+ и Fe2+.
Отношение не меняется при изменении места вы-
резания короткого импульса из полного импульса.

Рис. 3. Внешний вид сцинтиллятора.
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Исходя из полученных значений видно, что ин-
тенсивность пучка ионов Fe2+ более чем в 20 раз
превышает интенсивность ионов Fe3+. Это связа-
но с тем, что остальные частицы Fe+3 не ускори-
лись в RFQ.

ЗАКЛЮЧЕНИЕ

С целью проверки работы канала вывода пучка
после его модернизации была выполнена работа
по поиску и экспериментальной проверке рабо-
чего режима транспортировки пучка от ускоряю-
щей структуры до мишени. Проведенные измере-
ния профиля пучка ионов железа, показывают, что
значение плотности тока пучка по площади поверх-
ности образца не меняется более чем на 20%. Изме-
рения тока пучка, выполненные с заслонки-про-
филометра после диафрагмы диаметром 3 мм, для
данного режима показали суммарный ток на об-

разец равный 250 мкА. Эти параметры пучка
полностью соответствуют требованиям прове-
дения имитационного эксперимента по облучению
образцов на ускорителе ТИПр до повреждающей
дозы 100 и выше сна с целью исследования радиа-
ционной стойкости материалов термоядерных ре-
акторов, а также влияния нарабатываемых в ходе
облучения дефектов на их эксплуатационные ха-
рактеристики [5].

Проверка режима работы линз канала вывода с
использованием сцинтиллятора и ПЗС-камеры.
По сравнению с использованием профиломет-
ра ПЗС-камера позволяет более быстро описать
профиль пучка и дает более полное представле-
ние о распределении интенсивности пучка в по-
перечном сечении.

Выполненные времяпролетные измерения пуч-
ка ускоренных ионов показали, что отношение
ионов требуемого зарядового состояния для имита-
ционных экспериментов Fe2+ превышает интен-
сивность тока ионов зарядового состояния Fe3+ в
двадцать раз, что позволяет сделать вывод о до-

Рис. 4. Распределение интенсивности пучка в плоскости расположения мишени: горизонтальный профиль (а), верти-
кальный профиль (б).
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Рис. 5. Зависимость интенсивности сигнала с детек-
тора от времени.
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статочной сепарации ионов зарядовых состояний
Fe для проведения облучения ионами Fe2+. Зна-
ние зарядового состояния ускоренных ионов не-
обходимо для точного расчета флюенса ускорен-
ных ионов на образцы.

Результаты подготовки позволили провести бо-
лее 2000 ч облучательных имитационных экспе-
риментов за 2020 г. только для данного формата
образцов.
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The paper presents the results of experiments carried out during the preparation of the HIPr accelerator for
irradiation of reactor structural materials specimens in order to simulate radiation-induced defects. A method
for measuring the beam profile using a CCD camera is presented. The results of time-of-flight measurements
of Fe2+ ion beam based on HIPr accelerator with an RFQ accelerating structure are presented.
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