___ УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ __ ДЛЯ ЯДЕРНЫХ ТЕХНОЛОГИЙ

УЛК 537.563.2

ОПТИМИЗАЦИЯ СИСТЕМЫ ЭКСТРАКЦИИ И ФОРМИРОВАНИЯ ПУЧКА ЭЦР ИСТОЧНИКА ИОНОВ

© 2023 г. М. С. Дмитриев^{а, *}, М. В. Дьяконов^а, О. А. Иванов^а, А. С. Краснов^а

^a Национальный исследовательский ядерный университет "МИФИ", Москва, 115409 Россия *E-mail: msdmitriyev@mephi.ru

Поступила в редакцию 25.07.2022 г. После доработки 01.08.2022 г. Принята к публикации 02.08.2022 г.

Разработана система экстракции и формирования пучка ионов с возможностью продольного перемещения системы электродов относительно плазменного электрода для ЭЦР источника с рабочей частотой 2.46 ГГц. Проведена оптимизация извлекающей системы электродов и фокусирующей электростатической линзы. Выполнено моделирование динамики пучков протонов и ионов He²⁺ в источнике.

Ключевые слова: ионный источник, электронно-циклотронный резонанс, плазменная камера

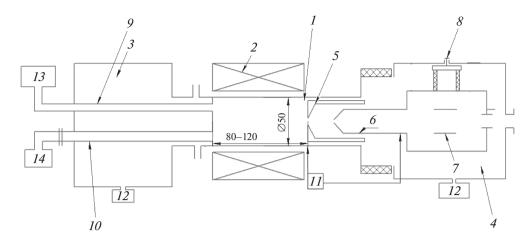
DOI: 10.56304/S207956292205013X

ВВЕДЕНИЕ

Одним из важнейших узлов линейного ускорителя ионов является источник заряженных частиц. Для получения протонов и двухзарядных ионов гелия может быть использован источник на основе генерации плазмы под воздействием СВЧ излучения. При этом получение сильноточного пучка протонов происходит в условиях относительно высокого давления газа в отсутствие резонанса с магнитным полем, а получение двухзарядных ионов гелия требует выполнения условия электронно-циклотронного резонанса (ЭЦР) при низком давлении. Создание источника ионов, в котором возможна реализация обоих режимов работы является актуально научно-технической задачей. В НИЯУ МИФИ разрабатывается система экстракции и формирования пучка ионов для нового ЭЦР источника с рабочей частотой 2.46 ГГц, предназначенного для получения протонов и ионов He^{2+} [1]. Система построена на основе квазипирсовской системы электродов и электростатической линзы [2]. Предусмотрена возможность продольного перемещения системы электродов, обеспечивающая юстировку положения извлекающего электрода в трех плоскостях относительно магнитной системы и плазменного электрода. Ранее были представлены результаты моделирования полной электростатической модели, включающей в себя как систему экстракции пучка, состоящей из плазменного электрода, извлекающего электрода и электростатической линзы, так и вакуумной камеры имеющий на своих стенках потенциал плазменного электрода, что вносит значительные коррективы в разработанную ранее систему [3].

1. ПОСТРОЕНИЕ И РАСЧЕТ МОДЕЛИ

Для оценки эмиттанса и диаметра пучка была разработана 3D модель в среде проектирования CST Studio Suite. С помощью модели появилась возможность отслеживания изменений параметров эмиттанса и диаметра пучка при различных параметрах ЭЦР источника.


Схема разрабатываемого ионного источника на электронно-циклотронном резонансе с рабочей частотой 2.45 ГГц показана на рис. 1.

Плазменная камера источника имеет диаметр 50 мм и длину 100 мм, на выходе установлен сменный плазменный электрод и сборка извлекающей системы. Все элементы извлекающей системы имеют возможность перемещения и юстировки, а также замены всех электродов. В табл. 1 представлены основные параметры системы.

Электростатическия линза Эйнцеля выполнена единым блоком с извлекающим электродом, что позволяет легко осуществлять продольное перемещение и тонкую настройку взаимного положения электродов. Конструкция линзы показана на рис. 2.

2. ОПТИМИЗАЦИЯ ПАРАМЕТРОВ

Выполнялась оптимизация параметров плазменного электрода, наконечника извлекающего электрода экстрактора, потенциалов и геометрии электродов электростатической линзы. На первом этапе удалось добиться следующих результатов для He^{2+} : на расстоянии 1000 мм от начала извлекающего электрода среднеквадратичный попе-

Рис. 1. Схема ионного источника: I — плазменная камера, 2 — магнитная система, 3 — инжекционная вакуумная камера, 4 — вакуумная камера экстрактора, 5 — плазменный электрод, 6 — извлекающий электрод, 7 — электростатическая линза, 8 — привод продольного перемещения экстрактора, 9 — трубка подачи газа, 10 — волновод или волноводный переход, 11 — система охлаждения, 12 — вакуумная система, 13 — система подачи газа, 14 —система СВЧ питания.

речный эмиттанс составил 0.028 мм рад, диаметр пучка — 6 мм. Полученная зависимость эмиттанса от координаты для пучка ионов He^{2+} в экстракторе показана на рис. 3.

Как видно, на промежутке от 400 до 800 мм имеется два пика, первый со значением 0.066 мм рад примерно совпадает с серединой центрального электрода электростатической линзы, второй пик со значением 0.056 мм рад находится между электродной сборкой линзы и последним электродом, находящимся под потенциалом земли.

Рисунок 4а наглядно поясняет причины увеличения эмиттанса в указанных областях. В обла-

сти *I* имеется характерное для тормозящей линзы распределение потенциала, где и наблюдается первый максимум эмиттанса, второй пик — следствие воздействия распределения потенциала на пучок в области *2*. Из рис. 4 видно, что область *2* по своей структуре тоже является электростатической линзой. Для улучшения характеристик экстрактора следует избавится от распределения потенциала в области *2* и оптимизировать область *1* таким образом, чтоб получить минимальное значение эмиттанса на выходе системы.

Как видно из рис. 46, область распределения потенциала 2 из рис. 4а была полностью исключена из

Таблица 1. Основные параметры извлекающей системы

Параметр	Значение, мм
Длина центрального электрода электростатической линзы	70
Диаметр центрального электрода электростатической линзы	100
Диаметр боковых электродов электростатической линзы	70
Расстояние между электродами электростатической линзы	13
Ширина ускоряющего промежутка	145.5
Полная длина системы	1018

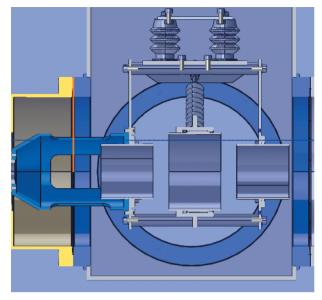
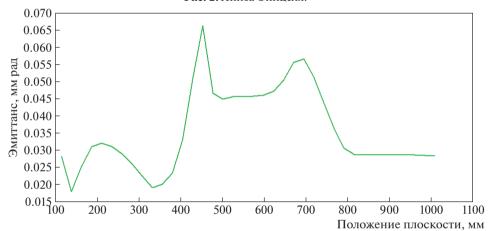



Рис. 2. Линза Эйнцеля.

Рис. 3. Зависимость среднеквадратичного поперечного эмиттанса от координаты для пучка ионов He^{2+} .

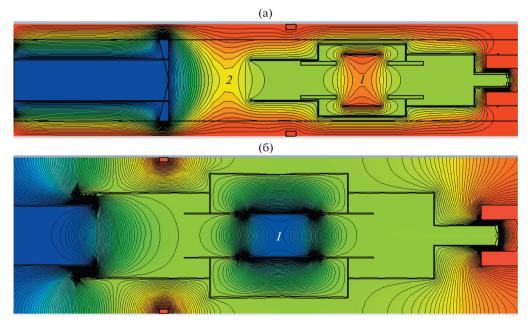
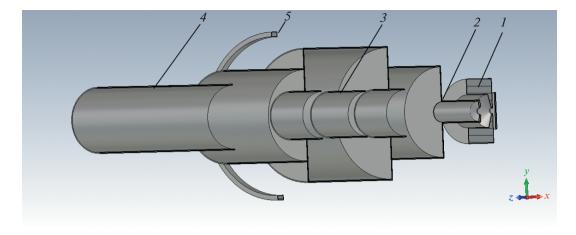
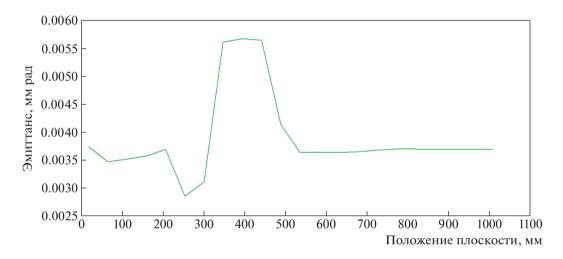




Рис. 4. Распределение потенциалов в системе экстракции: (а) до оптимизации, (б) после оптимизации.

Рис. 5. Схема экстрактора: I – плазменный электрод, 2 – извлекающий электрод, 3 – электростатическая линза, 4 – электрод под потенциалом земли, 5 – фланец стенки вакуумной камеры.

Рис. 6. Зависимость среднеквадратичного поперечного эмиттанса от координаты для пучка ионов He^{2+} после оптимизации.

системы благодаря изменению конструкции электродов на выходе источника. Распределение в области *1* существенно изменилось, благодаря использованию ускоряющей электростатической линзы вместо тормозящей, применявшейся в предыдущих вариантах конструкции. В окончательном варианте системы все три электрода электростатической линзы имеют одинаковый диаметр, схема системы экстракции и формирования пучка и зависимость эмиттанса от координаты показаны на рис. 5, 6.

ЗАКЛЮЧЕНИЕ

В работе представлены результаты моделирования системы экстракции и формирования пучка для нового ЭЦР источника ионов. Благодаря проведенной оптимизации удалось сни-

зить значение эмиттанса на выходе экстрактора с 0.028 мм рад до 0.0036 мм рад при диаметре пучка на выходе экстрактора, составившем 7 мм. Будет проводиться дальнейшая оптимизация параметров системы экстракции и формирования пучка ЭЦР источника ионов.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- Polozov S.M. et al. // Proc. RuPAC21. 2021. P. 51–54. https://doi.org/10.18429/JACoW-RuPAC2021-TUB07
- Shimizu K., Kawakatsu H. // J. Phys. E. 1974. V. 7 (6). P. 472.
- 3. Дмитриев М.С., Дьяконов М.В., Туманов С.А. // Сб. науч. тр. VII Международной конф. "Лазерные, плазменные исследования и технологии ЛАПЛАЗ-2021". Москва, 23—26 марта 2021 г. 2021. Москва: НИЯУ МИФИ. С. 388—389.

Optimization of an ECR Ion Source Beam Extraction and Formation System

M. S. Dmitriev^{1, *}, M. V. D'yakonov¹, O. A. Ivanov¹, and A. S. Krasnov¹

¹National Research Nuclear University (Moscow Engineering Physics Institute), Moscow, 115409 Russia *e-mail: msdmitriyev@mephi.ru

Received July 25, 2022; revised August 1, 2022; accepted August 2, 2022

Abstract—This article describes the development of an ion beam extraction and formation system with longitudinal travel of the electrode system with respect to the plasma electrode for a 2.46 GHz ECR source. Optimization of the electrode extracting system and focusing electrostatic lens have been performed. The dynamics of the He²⁺ proton and ion beams in the source have been simulated.

Keywords: ion source, electron cyclotron resonance, plasma chamber