___ ВЗАИМОДЕЙСТВИЕ ПЛАЗМЫ, ПУЧКОВ ЧАСТИЦ ____ И ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

УЛК 539.126.4

ПОИСК СКАЛЯРНОГО РЕЗОНАНСА В СИСТЕМЕ ωφ В ПИОН-ЯДЕРНОМ ВЗАИМОДЕЙСТВИИ ПРИ ИМПУЛЬСЕ 29 ГэВ/с

© 2020 г. М. С. Холоденко* от группы ВЕС

Институт физики высоких энергий Национального исследовательского центра "Курчатовский институт", Протвино, Московская обл., 142281 Россия

*E-mail: marina.kholodenko@ihep.ru Поступила в редакцию 07.08.2020 г. После доработки 11.08.2020 г. Принята к публикации 11.08.2020 г.

Изучена реакция перезарядки $\pi^- p \to n\omega(783)\phi(1020)$, $\omega \to \pi^+ \pi^- \pi^0$, $\phi \to K^+ K^-$ на модернизированной установке ВЕС (У-70, Протвино) при взаимодействии пучка π -мезонов с импульсом 29 ГэВ/c с бериллиевой мишенью. Отобрано 905 событий $\omega \phi$ -системы. В распределении по инвариантной массе $\omega \phi$ -системы $M_{\omega \phi}$ наблюдается околопороговый сигнал с массой $M \sim 1.9$ ГэВ/ c^2 . В результате пятичастичного парциально-волнового анализа(ПВА) обнаружено доминирование в этой области масс скалярного состояния ($J^{PC}=0^{++}$). В предположении резонансной природы сигнала его масса и ширина определены как $M=1814\pm31$ МэВ/ c^2 , $\Gamma=182\pm19$ МэВ/ c^2 .

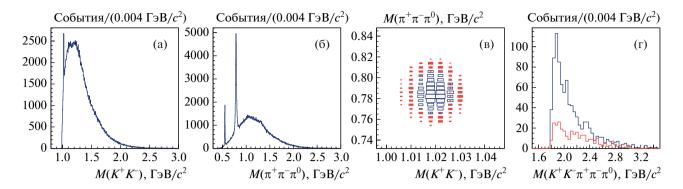
Ключевые слова: векторный мезон, эксперимент ВЕС, ИФВЭ-Протвино, фиксированная мишень, парное рождение, спектр масс: (Phi(1020) omega(783)), околопороговое образование: (1810), парциально-волновой анализ, масса-ширина, спин-четность, экспериментальный результат, Phi(1020) - K + K-, omega(783) - Phi pi - Phi0

DOI: 10.1134/S2079562920040065

1. ВВЕДЕНИЕ

Сектор легких скалярных мезонов занимает особое место в мезонной спектроскопии. Существует неопределенность и избыточность состава одного SU(3) нонета в области скалярных мезонов до 2 ГэВ: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$, $f_0(1790)$, $f_0(1800)$. Возможно некоторые из этих состояний имеют отличную от $q\bar{q}$ структуру: 4-х кварковая структура, мезонная молекула и др. ([1, 2]).

Околопороговый сигнал в спектре инвариантной массы $\omega \varphi$ системы впервые наблюден в реакции $e^+e^- \to J/\psi \to \gamma \omega \varphi$ в экспериментах BESII [3], BESIII [4], сигнал интерпретирован как скаляр X(1800), но не исключен эффект взаимодействия в конечном состоянии, околопороговый эффект (threshold cusp), хвост от f_0 (1710). В связи с этим актуально изучение данного процесса в другой реакции.


Подобный сигнал также был наблюден при взаимодействии пучка пионов с импульсами 27 и 36 ГэВ/c с бериллиевой мишенью в реакции $\pi^-p \to \phi \omega n$ в эксперименте ВЕС [5].

2. ЭКСПЕРИМЕНТ ВЕС

Эксперимент ВЕС расположен на ускорителе У-70 (Протвино) и работает со вторичным пучком π^{-} мезонов с импульсом 29 ГэВ/с. ВЕС – комбинированная установка с фиксированной мишенью для регистрации многочастичных конечных состояний заряженных частиц и фотонов, состоит из широко - апертурного магнитного спектрометра, электромагнитного калориметра, черенковских счетчиков для идентификации заряженных продуктов реакции и пучковой частицы, бериллиевой мишени толщиной 4 см (~10% ядерной длины взаимодействия) и охранной системы. Проведена модернизация установки ВЕС ([6, 7]). Полный поток пучковых частиц через мишень за время используемых в анализе экспозиций составил $1.73 \cdot 10^{11}$.

3. ОТБОР СОБЫТИЙ

Рассмотрены события реакции $\pi^- p \to \omega \phi n$ с $\omega \to \pi^+ \pi^- \pi^0$ и $\phi \to K^+ K^-$, полученные на модернизированной установке BEC. Отобраны события с четыремя реконструированными заряжен-

Рис. 1. Спектры инвариантных масс $M(K^+K^-)$ (a), $M(\pi^+\pi^-\pi^0)$ (б), $M(K^+K^-\pi^+\pi^-\pi^0)$ в сигнальной области(синим) (в) и вне (красным) (г).

ными треками (два положительно заряженных, два отрицательно заряженных) и двумя либо тремя γ -квантами. π^0 -мезоны зарегистрированы в γ -моде. Для отобранных пар γ -квантов выполнен кинематический 1С фит к массе π^0 -мезона. Используя многоканальный черенковский счетчик отобраны события, содержащие $K^+K^-\pi^+\pi^-$ в конечном состоянии. Передача импульса в t-канале мала (квадрат переданного импульса |t| < 1 ГэВ $^2/c^2$), поэтому в (квази)эксклюзивной реакции без учета частицы отдачи сумма импульсов всех частиц должна быть близка к импульсу пучка. В данном анализе наложено требование на суммарный импульс всех частиц системы $K^+K^-\pi^+\pi^-\pi^0$: 27.5 < P_{tot} < 31.0 ГэВ/c.

На рис. 1 представлены распределения по инвариантным массам K^+K^- (а) и $\pi^+\pi^-\pi^0$ (б), видны сигналы $\phi(1019)$ и $\phi(783)$ мезонов соответственно. Событие принимается, если массы ω , ϕ мезонов удовлетворяют эллиптическому отбору $(M_{\pi^+\pi^-\pi^0}-M_{\omega})^2 + (M_{K^+K^-}-M_{\phi})^2 < 1$ гле $M_{\pi^+\pi^-\pi^0}$

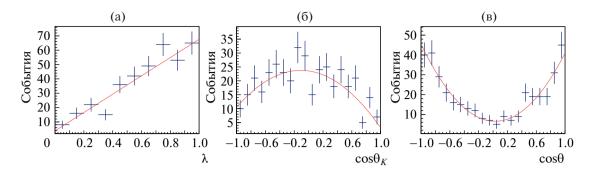
$$rac{(M_{\pi^+\pi^-\pi^0}-M_{\omega})^2}{\delta_1^2}+rac{(M_{K^+K^-}-M_{\phi})^2}{\delta_2^2}<1,$$
 где $M_{K^+K^-}$ и $M_{\pi^+\pi^-\pi^0}$ — инвариантные массы частиц K^+K^- и

 $M_{\pi^+\pi^-\pi^0}$ — инвариантные массы частиц K^+K^- и $\pi^+\pi^-\pi^0$ соответственно, а $\delta_1=22$ МэВ/ c^2 и $\delta_2=8.8$ МэВ/ c^2 — выбраны в соответствии с аппаратной шириной сигналов ω и ϕ мезонов. Также для событий, удовлетворяющих всем условиям отбора, представлено распределение по массе $M(\omega\phi)$ (рис. 1Γ — синим), в котором наблюдается околопороговый сигнал с $M\sim 1.9$ ГэВ/ c^2 .

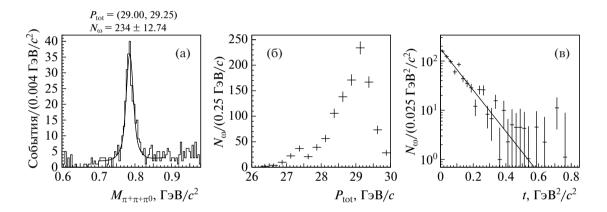
Чтобы убедиться, что наблюдаемый околопороговый сигнал не является фоновым процессом, проведена оценка фона. Для этого отбирались события, удовлетворяющие всем критериям отбора, за исключением эллиптического обрезания на массы ω и ф-мезонов (выбирается область вне эл-

липса, фон от не ω , не ϕ -мезонов). Форма распределения по инвариантной массе $M(\omega \phi)$ в данной области (рис. $1 \Gamma -$ красным) сильно отличается от сигнальной области, околопороговый сигнал не наблюдается.

Для отобранных событий с $M(\omega\phi) < 1.975 \ \Gamma \Rightarrow B/c^2$ на рис. 2а показано распределение величины $\| \mathbf{r}_0 - \mathbf{r}_0 \|^2$


$$\lambda = \frac{\left\|p_{\pi^{-}}, p_{\pi^{+}}\right\|^{2}}{\lambda_{\max}}$$
 (в спиральной системе центра масс

$$\omega$$
-мезона), $\lambda_{\max} = Q^2 \left(\frac{Q^2}{108} + \frac{m_\pi Q}{9} + \frac{m_\pi^2}{3} \right)$, $Q = T_{\pi^+} + T_{\pi^-} + T_{\pi^0}$ (T -кинетическая энергия пионов), которое характеризует количество фоновых событий под ω -мезоном. Для сигнальных событий распределение λ характеризуется линейным ростом с пересечением 0 при $\lambda = 0$. Распределение по полярному углу каона в системе покоя фмезона (рис. 26) соответствует ожидаемому распределению при распаде векторных мезонов. Распределение по углу θ между нормалью к распаду ω -мезона и каоном в системе покоя ϕ -мезона, представленное на рис. 2в, имеет форму $\cos^2 \theta$, что ожидается при распаде скаляра в 2 вектора с орбительным моментом $L=0$ (Σ рому)


ожидается при распаде скаляра в 2 вектора с орбитальным моментом L=0 (S-волна). Проведена процедура "побинного фитирования" сигнала по переменным X: инвариантная масса системы $M(K^+K^-\pi^+\pi^-\pi^0)$, |t| и P_{tot} . Построены распределения по всем переменным X, путем определения числа ω -мезонов из фита распреде-

масс $M(K^+K^-)$ вблизи массы ф-мезона для каждого бина по переменной X (рис. 3a). Аналогичные распределения построены путем определения числа ф-мезонов. Эти два способа побинной фильтрации дают полностью совместимые результаты, что подтверждает малый уровень фона не ω ф системы. В распределении по P_{tot} , получен-

ления по массе $M(\pi^+\pi^-\pi^0)$ для событий в полосе

Рис. 2. Распределения для системы ωφ: (a) по нормированной длине нормали к плоскости распада ωλ; (б) по полярному углу K^+ в системе покоя φ; (в) по углу между нормалью к поскости распада ω и каоном в системе покоя φ. Сплошными красными линиями показаны фиты распределений.

Рис. 3. (а) Фит сигнала ω -мезона для одного бина по переменной P_{tot} ; распределения по P_{tot} (б) и |t| (в), полученные в результате побинной фильтрации.

ному побинной фильтрацией (рис. 3б), наблюдается пик, соответствующий эксклюзивному выделению изучаемой системы. Неэкслюзивный фон, проявляющийся как подложка слева от пика, составляет около 10%. Полученное распределение по |t| (рис. 3в) имеет экспоненциальный вид с наклоном -9.6 ± 0.5 ГэВ $^{-2}c^2$, характерным для пионного обмена.

4. ПАРЦИАЛЬНО-ВОЛНОВОЙ АНАЛИЗ

Пятичастичный ПВА системы $\omega \phi$ выполнен в диапазоне масс (1.78—3.4) ГэВ/ c^2 с бином по массе 60 МэВ/ c^2 в едином диапазоне по |t| (0—1) ГэВ 2 / c^2 . Амплитуды построены методом нерелятивистского формализма тензоров Земаха [8]. Параметрами фита является блочно-диагональная по натуральности обмена (reflectivity — симметрия относительно плоскости рождения) матрица плотности состояний. Используется расширенный метод максимального правдоподобия для нахождения пара-

метров с учетом аксептанса установки. Амплитуды включают спектральные линии ω , ϕ -мезонов, которые определены как функции Гаусса с дисперсией, определяемой разрешением установки и превышающей собственные ширины мезонов. ПВА выполнен со следующим набором волн с квантовыми числами $J^{PC}M^{\eta}$, где J^{PC} — спин и P— четность, C—четность, M^{η} —проекционное число M и натуральность η .

• FLAT — псевдоволна с равномерным распределением по фазовому объему 5-ти частичной системы для эффективного учета фона и несовершенства модели;

•
$$J^{PC}M^{\eta} = 0^{++}0^{-}, 2^{++}0^{-}, 0^{-+}0^{+}$$

Результаты ПВА с учетом аксептанса установки, составившего в области масс изучаемой системы около 8%, представлены на рис. 4. Интенсивности волн, полученные в результате двух анализов на установке ВЕС, полностью совместимы, доминирует волна $J^{PC} = 0^{++}$. Данные по инте-

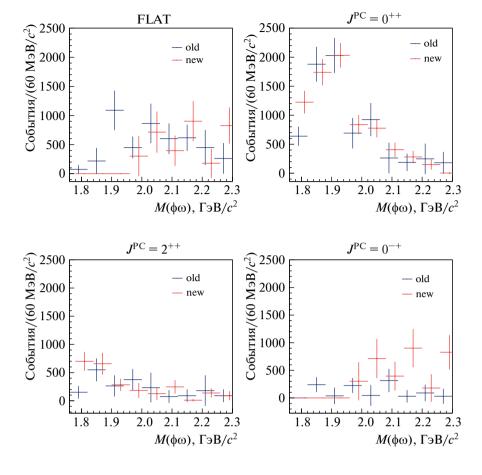
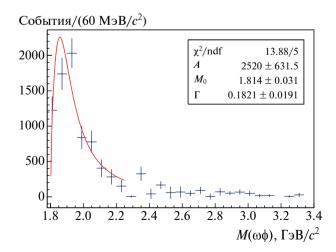



Рис. 4. Интенсивности волн ωφ системы: красным — данные модернизированной установки ВЕС, синим — данные установки ВЕС до модернизации.

гральному потоку пучковых частиц через мишень для предыдущего анализа данных отсутствуют, грубая оценка составляет $4 \cdot 10^{11}$.

Рис. 5. Фит волны 0^{++} функцией f(M) (1).

В предположении резонансной природы наблюдаемого образования определена его масса и ширина: $M=1814\pm31~{
m M} \odot {
m B}/c^2,~\Gamma=182\pm19~{
m M} \odot {
m B}/c^2.$ Фит выполнен следующей функцией (рис. 5):

$$f(M) = \begin{cases} 0, M < (M_{\omega} + M_{\phi}) \\ PhS(M) \cdot A \cdot BW(M), M > (M_{\omega} + M_{\phi}) \end{cases}, (1)$$

где
$$BW(M) = \frac{1}{(M^2 - M_0^2)^2 + M_0^2 \Gamma^2}$$
 — функция

Брейта—Вигнера; $PhS(M) = |p_{\omega}|/M$ — функция двухчастичного фазового пространства.

Полученные параметры сигнала коррелируют. При фиксации параметров M_0 , Γ получаем $A=2520\pm160$, что соответствует числу событий в пике $N=7230\pm459$.

5. ЗАКЛЮЧЕНИЕ

На данных модернизированной установки ВЕС отобраны события реакции $\pi^- p \to \omega \phi n$. В спектре масс $M(\omega \phi)$ наблюдена пороговая осо-

бенность, в которой доминирует состояние $J^{PC}=0^{++}$. Спектр масс $M(\omega\phi)$ и результаты ПВА совместимы с полученными в более раннем анализе на установке ВЕС. В предположении резонансной природы сигнала $f_0(1800)$ его масса и ширина определены как $M=1814\pm31~{
m MpB/c^2}$, $\Gamma=182\pm19~{
m MpB/c^2}$. Близость сигнала к порогу искажает брейт—вигнеровскую форму. Кроме того, возможны другие механизмы образования околопорогового пика, например от подпорогового резонанса $f_0(1710)$ [9]. Возможно одна из этих причин объясняет сравнительно плохую подгонку сигнала ($\chi^2/{
m ndf} \sim 3$).

БЛАГОДАРНОСТИ

Работа выполнена при поддержке РФФИ в рамках научного проекта № 20-02-00246 A.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- 1. van Beveren E., Rijken T.A., Metzger K., Dullemond C., Rupp G., Ribeiro J.E. // Z. Phys. 1986. V. 30. P. 615; arXiv:0710.4067 [hep-ph].
- Pelaez J.R. // Mod. Phys. Lett. A. 2004. V. 19. P. 2879; arXiv:hep-ph/0411107.
- 3. *Ablikim M. et al.* (BES Collab.) // Phys. Rev. Lett. 2006. V. 96. P. 162002; arXiv:hep-ex/0602031.
- 4. *Ablikim M. et al.* (BESIII Collab.) // Phys. Rev. D. 2013. V. 87. P. 032008; arXiv:1211.5668 [hep-ex].
- Nikolaenko V. et al. // Int. J. Mod. Phys. A. 2009. V. 24. P. 295.
- Dorofeev V.A. et al. // Instrum. Exp. Tech. 2016. V. 59. P. 658.
- 7. Ivashin A., Matveev V., Khokhlov Yu. IHEP Preprint 2010-10. 2010. Protvino: IHEP.
- 8. Zemach Ch. // Phys. Rev. 1965. V. 140. P. B97.
- 9. Martinez Torres A., Khemchandani K., Navarra F., Nielsen M., Oset E. // Phys. Lett. B. 2013. V. 719, P. 388; [arXiv:1210.6392 [hep-ph].

Search for a Scalar Resonance in the $\omega \phi$ System in the Collision of a 29 GeV/c Pion Beam with a Nuclear Target

M. S. Kholodenko* (on behalf of the VES Collaboration)

Institute for High Energy Physics, National Research Center Kurchatov Institute, Protvino, Moscow region, 142281 Russia *e-mail: marina.kholodenko@ihep.ru

Received August 7, 2020; revised August 11, 2020; accepted August 11, 2020

Abstract—The charge-exchange reaction $\pi^- p \to n\omega(783)\phi(1020)$, $\omega \to \pi^+ \pi^- \pi^0$, $\phi \to K^+ K^-$ is studied on the upgraded VES facility (U-70, Protvino). There are 905 events of $\omega \phi$ -system selected. The signal near threshold ($M \sim 1.9 \text{ GeV}/c^2$) is observed in $\omega \phi$ invariant mass. The five-particles partial wave analyses shows that $J^{PC} = 0^{++}$ state dominates. Under the assumption of the resonant nature of the signal, its mass and width are obtained: $M = 1814 \pm 31 \text{ MeV}/c^2$ and $\Gamma = 182 \pm 31 \text{ MeV}/c^2$.

Keywords: vector meson, VES Experiment, IHEP-Protvino, fixed-target, pair production, mass spectrum: (Phi(1020) omega(783)), mass enhancement: (1810), partial wave analysis, mass: width, spin: parity, experimental results, Phi(1020) -> K+ K-, omega(783) -> pi+ pi- pi0